Air Pressure
We know that standard atmospheric pressure is 14.7 pounds per square inch. We also know that air pressure decreases as we rise in the atmosphere.
1013.25 mb = 101.325 kPa = 29.92 inches Hg = 14.7 pounds per in2 = 760 mm of Hg = 34 feet of water
Air pressure can simply be measured with a barometer by measuring how the level of a liquid changes due to different weather conditions. In order that we don't have columns of liquid many feet tall, it is best to use a column of mercury, a dense liquid.
The aneroid barometer measures air pressure without the use of liquid by using a partially evacuated chamber. This bellows-like chamber responds to air pressure so it can be used to measure atmospheric pressure.
Air pressure records:
Air pressure corrections owing to elevation, using a
temperature
of approximately 20°C.
Figure 6.6 in The Atmosphere, 8th edition, Lutgens and Tarbuck,
8th
edition, 2001.
An aside: flying in commercial airliners.
Usually when you fly on a commercial airline, the pilot
comes
on the loudspeaker and announces thank you for flying their airline,
the
estimated time of arrival (ETA) and the height you'll be flying, e.g.,
39,000'.
Well, they are not exactly telling you the truth. Since pressure
changes
from place to place, owing to weather systems, temperature, and
elevation,
airliners will fly at a constant air pressure rather than constant
altitude.
So, for example, if the pilot sets the airline to fly at 265 mb, that
should
be approximately 10 km (32,800'), but the actual elevation above sea
level
is variable.
Wind
Wind results from a horizontal difference in air pressure and since the sun heats different parts of the Earth differently, causing pressure differences, the Sun is the driving force for most winds.
The wind is a result of forces acting on the atmosphere:
Pressure Gradient Force, PGF
The Pressure Gradient Force (PGF) is the direct result
of
different air pressures. As we have done for temperature by
drawing isothermal maps, we can do for pressure and draw isobaric
maps. Lines on these maps connect points of equal pressure.
The magnitude of the pressure difference and the distance between the two points in question will essentially determine the velocity of the PGF wind. That is, if the stations are far apart and the pressure difference is great, then the winds will be less than if the stations were close together and the pressure difference where the same. On the figure above, figure 6.9 from our book, you can see that the winds are directed away from the high pressure region, "H," and towards the low pressure region, "L." Note, however, that the direction of the winds are not exactly from high to low pressure.
Gravity, G
The vertical pressure gradient is much larger than the
horizontal
pressure gradient (~100 x), yet winds don't blow straight up.
Why?
Gravity acts to stop, or slow, the vertical flow of air, so vertical
winds
are much less than horizontal winds. Most vertical winds are on
the
order of 1 mph, however some downdrafts and updrafts can be up to 60
mph.
Coriolis Force, Co
Since the Earth rotates, objects that are above the
Earth apparently move or are deflected if they are already moving,
owing to it's rotation. This apparent motion is caused by the
Coriolis Force, Co. In the Northern Hemisphere objects will be
deflected to their right, while in the Southern Hemisphere objects will
be deflected to their left. The magnitude of the deflection is
also a function of distance from the equator
and velocity. So, the farther from the equator the object is, the
greater
the deflection, and the faster an object is moving, the greater the
deflection.
These "objects" can be anything from airplanes, to birds, to missiles,
to
parcels of air.
Coriolis Force (Co), results in objects being deflected owing to
rotation of the Earth beneath them.
Figure 6.11 in The Atmosphere, 8th edition, Lutgens and
Tarbuck, 8th
edition, 2001.
The effect of the Coriolis Force (for various latitudes).
Figure 6.12 in The Atmosphere, 8th edition, Lutgens and
Tarbuck, 8th
edition, 2001.
By the way, the Coriolis Force has nothing whatsoever to do with water the direction that water drains down sinks and toilets.
Friction, F
Friction is most important near the ground and less
important higher in the atmosphere. If we consider winds aloft,
an important wind
is the geostrophic wind. The geostrophic wind is a wind
that
parallels the isobars. At first this may seems incorrect, but
let's
think about it for a moment. If the PGF forces winds from high to
low
pressure and the Co deflects the winds, there may come a time when the
winds
are deflected 90° from their initial direction, directly toward the
low
pressure system. If the PGF exactly balances the Co, the the
geostrophic
winds will flow parallel to the isobars.
Winds near the surface are influenced by the ground. This influence is in the form of friction. Friction acts to retard the motion of the wind -- it is always in the direction opposite the wind velocity. Friction acts to oppose the flow of the air. The air will slow down, reducing the Coriolis force. This results in an imbalance of forces. The atmosphere adjusts, to regain a balance, by turning the wind toward low pressure. A new balance is achieved when the sum of the Friction and Coriolis forces balance the horizontal pressure gradient force.
But, the air must go somewhere!
Winds are directed towards low pressure, which results in:
At low elevations, friction will slow the air, and hence the Co will be less effective in its deflection of the wind.
The effect of friction on winds at high versus low elevations.
Figure 6.16 in The Atmosphere, 8th edition, Lutgens and
Tarbuck, 8th
edition, 2001.
Centrifugal Force, Ce
Newton's First Law of Motion: Objects at rest will
remain at rest and objects in motion will remain in motion, at the same
speed and
direction, unless acted upon by an outside force. Therefore,
winds,
even though they may be acted on by gravity, the Coriolis Force, and
the
pressure gradient force will tend to move in straight paths. This
is
best illustrated by swinging an object on a string and then letting the
string
loose. The object will travel straight, tangent to the circle it
was
once following, and will no longer follow a curved path.
Wind Measurement
How do we measure the wind speed? With anemometers.
Wind direction
Puzzling Questions
Recall the horizontal temperature effects on the pressure and the balance of forces at each level:
What have we found?
We'll talk more about the jet stream when we discuss global circulation in more detail.