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c© 2009 Birkhäuser Verlag Basel/Switzerland
0003-889X/09/060521-9
published online November 6, 2009
DOI 10.1007/s00013-009-0058-8 Archiv der Mathematik

Separable algebras over infinite fields are 2-generated
and finitely presented
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Abstract. We prove that every separable algebra over an infinite field F
admits a presentation with 2 generators and finitely many relations. In
particular, this is true for finite direct sums of matrix algebras over F and
for group algebras FG, where G is a finite group such that the order of
G is invertible in F . We illustrate the usefulness of such presentations by
using them to find a polynomial criterion to decide when 2 ordered pairs
of 2×2 matrices (A, B) and (A′, B′) with entries in a commutative ring R
are automorphically conjugate over the matrix algebra M2(R), under an
additional assumption that both pairs generate M2(R) as an R-algebra.
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1. Introduction. A fundamental method to define and study associative alge-
bras, both finite and infinite dimensional, is by means of their presentations.
Some presentations of integer matrix algebras have been found in [8, p. 18];
some closely related questions have been addressed in [1] and [10]. An impor-
tant infinite dimensional example of an algebra defined by a presentation is
a quantum plane (see [5, Chapter 4]); it is a quotient of the free polynomial
algebra in two variables by a certain principal ideal. The present paper is a
step in the study of presentations of separable algebras over fields. For the
convenience of the reader we recall the following definition.1

1This definition is equivalent to one of the usual definitions of separability (see
[9, Chapter 10]).
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Definition 1. Let F be a field, and let F be an algebraic closure of F . A unital
associative algebra A over F is called separable if it is finite dimensional as an
F -vector space, and if the algebra A ⊗F F is isomorphic to a finite direct sum
of matrix algebras over F .

The class of separable F -algebras is closed under taking quotients and
finite direct sums (see [9, Chapter 10]) and it coincides with the class of finite
dimensional semisimple F -algebras when F is perfect. Over a nonperfect field
F , the separable F -algebras are exactly those finite dimensional semisimple
F -algebras whose each simple factor is a matrix algebra over a division algebra
with center which is a separable extension of F . In particular, group algebras
FG, where G is a finite group and F is a field such that the order of G is
invertible in F , are separable.

The main result of this paper, Theorem 1, states that every separable alge-
bra over an infinite field F admits a presentation with 2 generators and finitely
many relations. A different proof of a special case of this result, when the alge-
bra is a direct sum of matrix algebras over F , has been given in [8, Theorem
3.11] for F = Q and in [6, Theorem A1] for an arbitrary infinite field F .
Theorem 1 is no longer true when F is a finite field. A detailed study of gen-
erating sets of finite dimensional separable algebras over finite fields and some
algebras over rings of algebraic integers has been initiated in [6] and then
extended and generalized in [7].

It is our conviction that presentations of algebras are not only interesting
in their own right but also because they have applications to the algebras they
describe. In the last section we show how to use presentations to find a poly-
nomial criterion to decide when 2 ordered pairs of 2 × 2 matrices (A,B) and
(A′, B′) with entries in a commutative ring R are automorphically conjugate
over the matrix algebra M2(R), under an additional assumption that both
pairs generate M2(R) as an R-algebra. This generalizes a classical result in
invariant theory [4]. Some related ideas have been recently studied in [3].

The goals of further research stemming from this paper should be to find
simple presentations of concrete separable algebras and to study their presen-
tation ideals. Furthermore, it is desirable to extend Theorem 2 below to both
higher dimensions and triples, quadruples, etc. of generating matrices.

2. Proof of the main result. All rings and algebras are assumed throughout
this paper to be associative and unital. For a commutative ring R, we denote
by R{x1, . . . , xn} the free associative R-algebra in x1, . . . , xn. We will often
call the elements of R{x1, . . . , xn} noncommutative polynomials.

We start with some simple observations.

Proposition 1. Let R be a commutative Noetherian ring, and let A be an
R-algebra which is finitely generated as an R-module. Then the kernel of
any homomorphism from the free associative algebra R{x1, . . . , xn} to A is a
finitely generated ideal.

Proof. Put U = R{x1, . . . , xn} and let f : U −→ A be a homomorphism of
R-algebras. Set ai = f(xi) for i = 1, . . . , n. Since A is a Noetherian R-module
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and the image of f is a submodule of A generated by all noncommutative
monomials in a1, . . . , an, a finite subset of these monomials generates f(A)
as an R-module. It follows that there is k such that every noncommutative
monomial in a1, . . . , an of degree k is an R-linear combination of monomials of
degree < k. Therefore, for each monomial M in x1, . . . , xn of degree k there is a
polynomial gM ∈ U of degree < k such that M −gM ∈ ker f . Let J be the ideal
of U generated by all the polynomials M − gM . The R-module U/J is finitely
generated because it is generated by all the monomials in a1, . . . , an of degree
< k. Since R is Noetherian, the submodule ker f/J of U/J is also a finitely
generated R-module. Thus ker f/J is finitely generated as a left U -module.
Since the ideal J is finitely generated, so is ker f . �

The lower bound in the following lemma is not optimal in many particular
cases (for example, for the algebra of 2×2 matrices over any field it is 2 instead
of 4), but the result is sufficient for our purposes.

Lemma 1. Let A be an m-dimensional algebra over a field F . Elements a1, . . . ,
ak generate A as an F -algebra if and only if all the noncommutative monomi-
als of degree ≤ m in a1, . . . , ak span A as a vector space over F .

Proof. Let Ai be the subspace of A spanned by all the monomials in a1, . . . , ak

of degree ≤ i. Clearly A1 ⊆ A2 ⊆ A3 ⊆ · · ·. We also see that

Ai+1 = Ai + a1Ai + a2Ai + · · · + amAi

for any i. It follows that if Ai = Ai+1 for some i, then Aj = Ai for all j ≥ i.
If Am �= A then dimF Am < m, so Ai = Ai+1 for some i < m. It follows

that Ai = Am for all i ≥ m and therefore Am is a proper subalgebra of A. In
other words, a1, . . . , ak ∈ A do not generate A as an F -algebra. This proves
that if a1, . . . , ak ∈ A generate A as an F -algebra then A = Am. The converse
implication is clear. �

Proposition 2. Let A be a finite dimensional algebra over an infinite field F .
Let L be a field extension of F . Then A can be generated as an F -algebra by k
elements if and only if A⊗F L can be generated as an L-algebra by k elements.
The set

GF (A, k) =
{
(v1, . . . , vk) ∈ Ak : v1, . . . , vk generate the F -algebra A

}
(1)

is open in the Zariski topology on Ak obtained by considering Ak as an F -vector
space.

Proof. In what follows, we consider A as a subset of A ⊗F L by identifying
every a ∈ A with a⊗1 ∈ A⊗F L. Let u1, . . . , um be a basis of A over F . Every
element a of A (respectively of A⊗F L) can be expressed in a unique way as a =∑m

i=1 tiui for some ti ∈ F (respectively for some ti ∈ L). Consider k elements
a1, . . . , ak in A (respectively in A⊗F L). Write aj =

∑m
i=1 ai,jui for j = 1, . . . , k

and for some ai,j ∈ F (respectively for some ai,j ∈ L). By Lemma 1, the ele-
ments a1, . . . , ak generate A (respectively A⊗F L) if and only if the monomials
of degree ≤ m in a1, . . . , ak span A (respectively A ⊗F L) as a vector space
over F (respectively over L). Consider a monomial M = M(x1, . . . , xk) in k
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variables. There are polynomials pM
j (x1,1, . . . , xm,k) ∈ F [x1,1, . . . , xm,k] such

that M(a1, . . . , ak) =
∑m

i=1 pM
i (a1,1, . . . , am,k)ui for any a1, . . . , ak ∈ A ⊗F L.

Let B be the matrix whose rows are labeled in some way by the monomials
M in x1, . . . , xk of degree ≤ m, and whose row with label M is

(
pM
1 (x1,1, . . . , xm,k) , . . . , pM

m (x1,1, . . . , xm,k)
)
.

The m × m minors of B are polynomials in F [x1,1, . . . , xm,k] and the ele-
ments a1, . . . , ak do not generate A (respectively A ⊗F L) as an F -algebra
(respectively as an L-algebra) if and only if all these polynomials evaluated
at xi,j = ai,j vanish. Therefore, A cannot be generated by k elements as an
F -algebra if and only if all the m × m minors of B vanish for every choice of
xi,j ∈ F . Since F is infinite, this means that each m × m minor of B is the
zero polynomial. Therefore, each of these minors vanishes for every choice of
xi,j ∈ L, and consequently A ⊗F L cannot be generated by k elements as an
L-algebra. This proves that if A ⊗F L can be generated by k elements as an
L-algebra, then A can be generated by k elements as an F -algebra.

Conversely, if A can be generated by k elements as an F -algebra, then
clearly the same elements generate A ⊗F L as an L-algebra.

Finally, a choice of a basis of A over F allows us to identify Ak with F kn

and therefore to define the Zariski topology on Ak (which does not depend on
the choice of a basis). We have proved above that the complement of the set
GF (A, k), defined in (1), is a closed subset of Ak consisting of common zeros
of all the m×m minors of the matrix B. Thus GF (A, k) is open in the Zariski
topology. �

As an immediate corollary we obtain the well known Primitive Element
Theorem from commutative algebra.

Corollary 1. Let A be a separable commutative algebra over an infinite field
F . Then A is a cyclic F -algebra.

Proof. Let F be an algebraic closure of the field F . It suffices to prove that
A ⊗F F is generated by one element as an F -algebra. Since A is separable, it
follows from Definition 1 that A ⊗F F = F

m
for some m. Let a1, . . . , am be

pairwise distinct elements of F . Then the Chinese Remainder Theorem implies
that the F -algebras F

m
and F [x]/((x−a1) . . . (x−am)) are isomorphic. Hence

A ⊗F F is generated by a single element as an F -algebra. �

Let Eij denote the matrix whose (i, j) entry is 1 and all other entries are
0. The following result is well known, see for example [8, Theorem 3.1].

Lemma 2. Let R be a commutative ring. For any n ≥ 1 the matrices E11 and
E1n +

∑n−1
i=1 Ei+1,i generate Mn(R) as an R-algebra.

For our proof of Theorem 1 we need a stronger version of Lemma 2 when
R is an infinite field, which is stated in the next proposition.

Proposition 3. Let F be an infinite field and let n ≥ 1. There are matri-
ces A,B ∈ Mn(F ) generating Mn(F ) as an F -algebra and such that the
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F -algebras F [A] and F [B] are separable. The set of such pairs of matrices
is open in the Zariski topology on Mn(F )2.

Proof. Choose an F -basis of Mn(F ). It allows us to identify Mn(F ) with

F
n2

and Mn(F )2 with F
2n2

. These identifications induce the Zariski topol-
ogy on Mn(F ) and Mn(F )2 respectively. By Proposition 2, the set Gn(F ) of
all (A,B) ∈ Mn(F )2 which generate Mn(F ) as an F -algebra is open in the
Zariski topology. By Lemma 2, this set is nonempty. The set A of all matrices
A ∈ Mn(F ) which have n different eigenvalues is nonempty. It is open in the
Zariski topology because it is given by the condition that the resultant of the
characteristic polynomial of A with its first derivative be nonzero. The set
B of (A,B) ∈ Mn(F )2 such that both A and B have n different eigenvalues
is nonempty. It is open in the Zariski topology because B = A2. Therefore,
Gn(F ) ∩ B is a nonempty open set in the Zariski topology. It remains to
note that if A has n distinct eigenvalues, then the algebra F [A] is separable
over F . �

Now we state and prove the main result of this paper.

Theorem 1. Let F be an infinite field and let A be a finite dimensional, separa-
ble F -algebra. Then A has a presentation with 2 generators and finitely many
relations.

Proof. First we prove that A has 2 generators as an F -algebra. By Propo-
sition 2, it suffices to prove that A ⊗F L is generated by two elements as
and L-algebra, where L is an algebraic closure of F . Now A ⊗F L is a finite
direct sum ⊕iBi of matrix algebras over L. For each i, there exist elements
ai, bi ∈ Bi which generate Bi as an L-algebra and such that L[ai], L[bi] are
separable L-algebras. Let T = ⊕iL[ai], S = ⊕iL[bi]. Thus both T and S are
commutative, separable L-algebras and therefore T = F [a], S = F [b] for some
a, b by Corollary 1. It follows that a, b generate A ⊗F L as an L-algebra.

Since the algebra A admits 2 generators, any such pair of generators defines
a finite presentation of A by Proposition 1 with n = 2. �

Remark 1. Theorem 1 is false for any finite field F . In fact, since Mn(F ) is
finite, it follows from the pigeonhole principle that for a given k > 0, if m is
sufficiently large then for any k elements of Mn(F )m there are two factors of
the product Mn(F )m such that each of the k elements has the same component
in each of the two factors. It follows that for a sufficiently large m the algebra
Mn(F )m cannot be generated by k elements. Some formulas for the smallest
number of generators of such algebras have been obtained in [6] and [7].

Also, the assumption about separability in Theorem 1 is essential as the
following example shows. Let V be a d-dimensional vector space over a field
L and let A = L ⊕ V be the algebra with componentwise addition, and mul-
tiplication given by (a, v)(b, w) = (ab, aw + bv). Then A cannot be generated
by less than d elements as an L-algebra.
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3. A conjugacy criterion for 2 pairs of 2 × 2 matrices over a commutative
ring. A classical topic in invariant theory and representation theory is to clas-
sify pairs of matrices under simultaneous conjugation. It is a hard problem in
high dimensions but for 2×2 matrices over C it has been worked out by Kraft
in [4]. To discuss it in more details we introduce the following notation. For a
commutative ring R we define as in [8, p. 16] the set

G2(R) =
{
(A,B) ∈ M2(R)2 : A,B generate M2(R) as an R-algebra

}
. (2)

The set G2(R) is nonempty by Lemma 2. By [6, Theorem 2.5], the set G2(R)
can be described as follows:2

G2(R) =
{
(A,B) ∈ M2(R)2 : det[A,B] is invertible in R

}
. (3)

The group PGL2(R) acts on this set by simultaneous conjugation. In [4] it
was proved that two elements (A,B) and (A′, B′) of G2(C) belong to the same
orbit if and only if

det A = det A′, det B = det B′, trA = trA′, trB = trB′,
tr(AB) = tr(A′B′). (4)

We will illustrate the usefulness of algebra presentations by using them to
give a new simplified proof of the above criterion, which works over arbitrary
commutative rings. We define the map conj : M2(R)2 → R5 by

conj(A,B) = (tr(A), det(A), tr(B), det(B), det(A + B)). (5)

The second author is grateful to Hendrik W. Lenstra for generously sharing
his ideas some of which have been used in the following theorem.

Theorem 2. Two pairs (A,B), (A′, B′) ∈ G2(R) satisfy conj(A,B) =
conj(A′, B′) if and only if there is an R-algebra automorphism f of M2(R)
such that f(A) = A′ and f(B) = B′. If, in addition, every rank one pro-
jective R-module is free, then there exists a matrix C ∈ GL2(R) such that
A′ = C−1AC and B′ = C−1BC if and only if conj(A,B) = conj(A′, B′).

The above mentioned result of Kraft from [4] is a special case of Theorem 2
by the Skolem–Noether Theorem. Note that (4) compares in the 5th compo-
nent traces of products, while the 5th component of (5) is the determinant
of the sum. Nevertheless, these two quintuples of invariants are equivalent
because of the following identity of 2 × 2 matrices over any commutative ring:

tr(A)tr(B) − tr(AB) + det(A) + det(B) − det(A + B) = 0.

We remark that Theorem 2 is false if we do not require that the matrix
pairs generate the matrix algebra. For example, conj(0, 0) = conj(0, E12) =
(0, 0, 0, 0, 0) yet the pairs (0, 0) and (0, E12) are not conjugate (recall that Eij

is the matrix whose (i, j) entry is 1 and all other entries are 0).
Theorem 2 is proved at the end of this section after some preliminary obser-

vations.

Lemma 3. Let R be a commutative ring and let f : M2(R) −→ M2(R) be an
R-algebra isomorphism. Then f preserves trace and determinant.

2As usual, if a, b are elements of some algebra, then we put [a, b] = ab − ba.
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Proof. The only monic polynomial of degree ≤ 2 over R annihilating E11 or
E22 is x2 − x. Similarly, the only monic polynomial of degree ≤ 2 over R
annihilating E12 or E21 is x2. Thus the same is true for the images of E11,
E22, E12, E21 under f . By the Cayley–Hamilton Theorem, a 2 × 2 matrix U
satisfies the identity U2 − (trU)U + det U = 0. It follows that the map f pre-
serves traces and determinants of E11, E22, E12, E21. Any X ∈ M2(R) can be
written as aE11 +bE12 +cE21 +dE22 for some a, b, c, d ∈ R. Applying the map
tr ◦ f to this expression for X, we see that tr(f(X)) = a+d = trX. Therefore,
f preserves the trace. Finally, since det(X)I = (trX)X − X2, it follows that
f also preserves the determinant. �

Consider now the free associative R-algebra R{x, y} in 2 variables. For tx, dx,
ty, dy, d ∈ R consider the ideal

I(tx, dx, ty, dy, d) =
〈
x2 − txx + dx, y2 − tyy + dy, xy + yx − (txy + tyx + dx + dy − d)

〉
. (6)

For matrices X,Y ∈ M2(R) consider the substitution homomorphism

η : R{x, y} −→ M2(R), η(x) = X, η(y) = Y. (7)

Let tx, dx, ty, dy, d be tr(X), det(X), tr(Y ), det(Y ), det(X + Y ), respectively;
they are the coordinate maps of conj defined by (5). Let

I(X,Y ) = ker η. (8)

We have the following result relating (6) and (8).

Lemma 4. The inclusion I(tx, dx, ty, dy, d) ⊆ I(X,Y ) holds, and it is an equal-
ity when η is onto.

Proof. The first claim of the lemma follows from the Cayley–Hamilton Theo-
rem. For the second claim observe that the R-module M = R{x, y}/I(tx, dx, ty,
dy, d) is generated by the images of 1, x, y, xy under the quotient map
R{x, y} −→ M . Thus there exists an R-module epimorphism γ : R4 −→ M .
Let η̃ : M −→ M2(R) be the map induced by η, and let δ : M2(R) −→ R4 be
the map

(
a b
c d

) �→ (a, b, c, d). If η is surjective, then so is η̃, and therefore so is
ε = δ ◦ η̃ ◦ γ : R4 −→ R4. Since ε is a homomorphism of a finitely generated
R-module onto itself, it follows that ε is an R-module automorphism. Thus η̃
is an R-module isomorphism and therefore I(tx, dx, ty, dy, d) = I(X,Y ). �

Lemma 5. Let η1, η2 be R-algebra epimorphisms R{x, y} −→ M2(R). Let Xi =
ηi(x), Yi = ηi(y) for i = 1, 2. Then I(X1, Y1) = I(X2, Y2) if and only if there
exists an automorphism β of M2(R) such that β(X1) = X2 and β(Y1) = Y2.

Proof. If the automorphism β exists then clearly β ◦ η1 = η2 and therefore
I(X1, Y1) = I(X2, Y2). Conversely, if I(X1, Y1) = I(X2, Y2) = I then ηi induces
an isomorphism ηi : R{x, y}/I(Xi, Yi) −→ M2(R), i = 1, 2, and β = η2 ◦ η−1

1

works. �
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We can strengthen the above result as follows.

Proposition 4. Let η1, η2 be R-algebra epimorphisms R{x, y} −→ M2(R). Let
Xi = ηi(x), Yi = ηi(y) for i = 1, 2. Then I(X1, Y1) = I(X2, Y2) if and only if
conj(X1, Y1) = conj(X2, Y2).

Proof. If the invariants are the same, then the kernels coincide by Lemma 4. If
the kernels coincide, then there is an automorphism f : M2(R) −→ M2(R) such
that f◦η1 = η2 by Lemma 5. Thus the five invariants coincide by Lemma 3. �
Proof of Theorem 2. Let (A,B), (A′, B′) ∈ G2(R). There are R-algebra epi-
morphisms η1, η2 : R{x, y} −→ M2(R) such that η1(x) = A, η1(y) = B,
η2(x) = A′, η2(y) = B′. By Proposition 4, we have conj(A,B) = conj(A′, B′)
if and only if ker η1 = ker η2, which by Lemma 5 is equivalent to the existence
of the automorphism f .

If in addition every rank one projective R-module is free then our claim
follows from the theorem of Auslander and Goldman [2, Theorem 3.6] stating
that over such ring R every automorphism of a separable central R-algebra is
inner. �
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