Physics 1161: Lecture 19
Lenses and your EYE

- textbook sections 27-1 - 27-3 \qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Review of Lenses Preflight 18.8

Focal point determined by geometry and Snell's Law: $n_{1} \sin \left(\theta_{1}\right)=n_{2} \sin \left(\theta_{2}\right)$

Fat in middle $=$ Converging Thin in middle = Diverging

Larger $n_{2} / n_{1}=$ more bending, shorter focal length.
$\mathrm{n}_{1}=\mathrm{n}_{2} \Rightarrow$ No Bending, $\mathrm{f}=$ infinity
Lens in water has \qquad focal length!

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Two very thin converging lenses each with a focal length of 20 cm are are placed in contact. What is the focal \qquad length of this compound lens?

1. 10 cm
2. 20 cm
3. 40 cm

Amazing Eye

- One of first organs to develop.
- 100 million Receptors
- 200,000/mm ${ }^{2}$
- Sensitive to single photons!
- http://hyperphysics.phy-
astr.gsu.edu/hbase/vision/retina.html\#c2

\qquad
\qquad
\qquad
\qquad

Which part of the eye does most of the light bending?

Cornea $n=1.38$
Lens $\quad n=1.4$
Vitreous $n=1.33$

1. Lens
2. Cornea
3. Retina
4. Cones
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
A person with normal vision (near point at 26 cm) is standing in front of a plane
mirror.
What is the closest distance to the mirror where the person can stand and still see
himself in focus?
1) 13 cm
2) 26 cm
3) 52 cm

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Near Point, Far Point

- Eye's lens changes shape (changes f)
- Object at any d_{0} can have image be at retina ($\mathrm{d}_{\mathrm{i}}=$ approx. 25 mm)
- Can only change shape so much \qquad
- "Near Point"
- Closest d_{0} where image can be at retina \qquad
- Normally, $\sim 25 \mathrm{~cm}$ (if far-sighted then further)
- "Far Point" \qquad
- Furthest d_{0} where image can be at retina
- Normally, infinity (if near-sighted then closer)

Preflight 19.4

Two people who wear glasses are camping. One of them is nearsighted and the other is farsighted. Which person's glasses will be
\qquad useful in starting a fire with the sun's rays?

Angular Size Preflight 19.6, 19.7

Both are same size, but nearer one looks bigger.

- Angular size tells you how large the image is on your retina, and how big it appears to be.

The focal length of the lens of a simple camera is 40 mm . In what direction must the lens be moved to
\qquad change the focus of the camera from a person 25 m away to a person 4.0 m away? \qquad

1. Away from the film \qquad
2. Towards the film

