The earth is divided into four main layers: the inner core, outer core, mantle, and crust. The core is composed mostly of iron (Fe) and is so hot that the outer core is molten, with about 10% sulphur (S). The inner core is under such extreme pressure that it remains solid. Most of the Earth's mass is in the mantle, which is composed of iron (Fe), magnesium (Mg), aluminum (Al), silicon (Si), and oxygen (O) silicate compounds. At over 1000 degrees C, the mantle is solid but can deform slowly in a plastic manner. The crust is much thinner than any of the other layers, and is composed of the least dense calcium (Ca) and sodium (Na) aluminum-silicate minerals. Being relatively cold, the crust is rocky and brittle, so it can fracture in earthquakes.
In addition, the two types of seismic wave behave differently, depending on the material. Compressional P waves will travel and refract through both fluid and solid materials. Shear S waves, however, cannot travel through fluids like air or water. Fluids cannot support the side-to-side particle motion that makes S waves.
Seismologists noticed that records from an earthquake made around the world changed radically once the event was more than a certain distance away, about 105 degrees in terms of the angle between the earthquake and the seismograph at the center of the earth. After 105 degrees the waves disappeared almost completely, at least until the slow surface waves would arrive from over the horizon. The area beyond 105 degrees distance forms a shadow zone. At larger distances, some P waves would arrive, but still no S waves. The Earth has to have a molten, fluid core to explain the lack of S waves in the shadow zone, and the bending of P waves to form their shadow zone.
You can get a rough estimate of the size of the Earth's core by simply assuming that the last S wave, before the shadow zone starts at 105 degrees, travels in a straight line. Knowing that the Earth has a radius of about 6350 km, you have a right triangle where the cosine of half of 105 degrees equals the radius of the core divided by the radius of the earth.
The fact that the Earth has a magnetic field is an idependent piece of evidence for a molten, liquid core. A compass magnet aligns with the magnetic field anywhere on the Earth, but other bodies like the Moon and Mars have no magnetic field. The earth cannot be a large permanent magnet, since magnetic minerals lose their magnetism when they are hotter than about 500 degrees C. Almost all of the earth is hotter, and the only other way to make a magnetic field is with a circulating electric current. Circulation and convection of electrically conductive molten iron in the Earth's outer core produces the magnetic field. To make the magnetic field, the convection must be relatively rapid (much faster than it is in the plastic mantle), so the core must be fluid.
Because the Earth's magnetic field arises in the unstable patterns of fluid flow in the core, it changes direction at irregular intervals. In recent geologic history it may have switched direction about every 20,000 years. Any kind of geologic deposit (e.g.: lava flows, layered muds) put down over time will thus have different layers magnetized in opposing directions, recording the magnetic field direction as it was when the layer solidified. Geophysicists can measure the changes in direction to make a magnetostratigraphy for the deposit.
At oceanic spreading centers new ocean floor is being created
constantly and slowly moved away from the rift. The farther the rock is
from the rift, the older it is, and it will also show the
magnetic reversals
like a tape recording.
(from Acton and Petronotis,
EOS,
1994;
Amer. Geophys.
Union)
This map of the Pacific Plate at various stages of geologic history could be constructed from the tape recording. Such maps show how the tectonic plates have re-arranged themselves over the last 200 million years.
The part of the mantle near the crust, about 50-100 km down, is especially soft and plastic, and is called the asthenosphere. The mantle and crust above are cool enough to be tough and elastic, and are known as the lithosphere. A heavy load on the crust, like an ice cap, large glacial lake, or mountain range, can bend the lithosphere down into the asthenosphere, which can flow out of the way. The load will sink until it is supported by buoyancy. If an ice cap melts or lake dries up due to climatic changes, or a mountain range erodes away, the lithosphere will buoyantly rise back up over thousands of years. This is the process of isostatic rebound.