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Abstract

Random deviations from the perfect symmetry of normally bilaterally symmetrical char-
acters for an individual with a given genotype occur during individual development due to
the influence of multiple environmental factors. Fluctuating asymmetry (FA) is often used as
a measure of developmental instability, and can be estimated as the variance of the distri-
bution of differences between the left and right sides. We addressed the question of whether
levels of FA were elevated in radioactively contaminated populations living around Chorno-
byl compared to those in reference populations of the yellow-necked mouse (Apodemus flavi-
collis). In addition, we studied amounts of directional asymmetry (DA) when one side is
larger than the other on average. There was a significant difference among populations,
including reference populations, in the amount of both FA and DA. A higher level of FA
was documented for the contaminated populations in close proximity to the failed Chorno-
byl reactor for both the asymmetry of size and shape. The FAs of size and shape were high-
est in populations from the most contaminated locations in the Chornobyl exclusion zone.
Although the directional asymmetry of shape was also highest in the contaminated popula-
tions, it was not significantly different from those in most of the reference populations.
Populations from less contaminated areas inside the Chornobyl exclusion zone did not
express FA values different from those of the reference populations outside the affected area.
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FA of skulls of A. flavicollis may indicate the degree to which the level of radioactive con-
tamination affects the development of animals at Chornobyl. However, the mechanisms
leading to these effects are not clear and probably vary from population to population.
There were significant correlations between the overall right to left differences for the Pro-
crustes aligned shape configurations, centroid sizes, and intramuscular 137Cs. Detectable
effects of radiation on developmental stability probably start to occur between 0.132 and
0.297 lGy/h.
# 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Developmental instability (DI) is the tendency for the phenotypic value of a trait

to deviate from the value expected for an individual of a given genotype in a given

environment (Palmer, 1996). Random errors, which occur during development, can

lead to small deviations from perfect symmetry between body sides for bilateral

characters. DI has been argued to be controlled genetically through such mechan-

isms as levels of whole-genome heterozygosity or genomic coadaptation (Clarke,

1993). On the other hand, it is believed to be character-, taxon- and environment-

specific (Batterham et al., 1996; Clarke, 1997). Moreover, much of the work

recently described in the literature has failed to provide a general biological mech-

anism that would explain patterns and mechanisms of stability in natural popula-

tions (Clarke, 1997). DI is believed to increase as a response to the outside stress,

when buffering mechanisms that are supposed to maintain symmetrical develop-

ment fail to counteract an increased number of small random errors. These errors

are difficult to observe directly on the trait, but can be estimated from the

increased variance in the asymmetry of bilateral characters across a population

(Klingenberg and McIntyre, 1998; Palmer, 1994).
Fluctuating asymmetry (FA) is an estimate of small, non-directional departures

from the expected bilateral symmetry for certain traits (Palmer, 1996; Van Valen,

1962). Statistically, FA can be estimated as the variance of a distribution of the dif-

ferences between the left and right sides among individuals. FA could provide an

estimate of DI, because the two sides of a bilaterally symmetrical organism should

share the same underlying genotype, and therefore should be identical in the same

environment (Møller, 1997; Palmer, 1994). While FA remains a controversial mea-

sure of developmental instability (Van Dongen and Lens, 2002), it attracts increas-

ing attention for its seemingly straightforward prediction of stress. A large number

of studies show a positive relationship between FA and environmental stress at the

population level (Møller and Swaddle, 1997), however, there are also studies that

do not show these effects. Moreover, there is at least one study on rodents that

demonstrates an opposite trend, where developmental stability actually increases in

mice from the contaminated sites (Gileva and Kosareva, 1994).
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Other common departures from the ideal asymmetry include directional asym-
metry (DA) when one side is larger than the other on average, and antisymmetry
when one of the sides is larger than the other consistently, but either side can be
the one that is larger (Palmer, 1996). While most of the FA within populations is
presumed to be environmental in origin, DA and antisymmetry are likely to be
more dependent on changes in individual genotypes (Leamy et al., 2000). In con-
trast, genetic components of FA are generally low, whereas those of environmental
components are usually high. Thus, FA has been used extensively as a measure of
developmental stability, whereas DA with its genetic basis has not typically been
recommended for this purpose (Leamy, 1999; Leamy et al., 2000). Unfortunately,
the genetic-by-environmental interaction component is not typically measured.

FA may have many potential causes that are extremely difficult to isolate in the
field, (Hershkovitz et al., 1993). Potential factors include loss of genetic variation
(Leamy, 1985), mutations (Clarke and McKenzie, 1987), adverse temperatures
(Clarke, 1992), nutritional stress (Swaddle and Witter, 1994), population density
(Zakharov et al., 1985), habitat fragmentation (Anciaes and Marinio, 2000), and a
variety of chemical factors (Ellegren et al., 1997; Graham et al., 1993; Møller,
1993; Pankakoski, 1985). Several hypotheses exist to explain the connection
between environmental stress and FA (Klingenberg and Nijhout, 1999; Woods et
al., 1999). Advances in molecular genetics have revealed some of the vast com-
plexity of developmental processes and the way they may relate to asymmetry, and
it is difficult to imagine that a single genetic mechanism could be responsible for
regulating the developmental response to stress (Batterham et al., 1996).

Stress resulting from excessive radiation may increase FA, because minor chan-
ges in environmental conditions would have more impact on the phenotype of indi-
viduals from exposed populations than from populations with no known exposure.
Organisms under stress may also require more energy to perform the same func-
tions as unstressed organisms, including energy spent for repair of the damage
caused by stress on their bodies, as well as energy spent while functioning in stress-
altered environments (Blum, 1988). On the other hand, genetic factors still influ-
ence the susceptibility of individuals and populations to the environmental factors
creating a genotype-by-environment interaction (Møller and Swaddle, 1997). An
increase in FA may reflect the expression of genetic variation at the phenotypic
level due to the incorporation of mutant alleles in individual genomes (Møller and
Swaddle, 1997). Finally, an increase of FA values would be expected in highly
inbred populations (Zakharov and Sikorski, 1997). Thus, FA may only be used as
a reliable indicator of environmental contamination when a substantial number of
reference populations with no known contamination are sampled in order to
account for the maximum number of relevant factors. In other words, it is essential
to establish the ambient level of FA in a species and to know whether FA can vary
significantly among reference populations even in the absence of assumed stressors.

Environmental radiation has imposed a significant amount of stress on popula-
tions in habitats contaminated during and since the 1986 Chornobyl meltdown.
Several studies conducted in and around the Chornobyl nuclear power plant
(ChNPP) have indicated that FA has significantly increased in plants and animals
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from the affected populations. FA was positively correlated with the level of con-
tamination by 137Cs in three different species of plants (Møller, 1998). In barn
swallows, levels of FA, as well as the frequency of partial albinism, are increased
near Chornobyl when compared to that of populations in reference areas (Ellegren
et al., 1997; Møller, 1993). Some of these effects may have direct influences on indi-
vidual fitness and could be expressed in lower competitive ability and survival
(Møller, 1997). However, until recently mammalian populations from Chornobyl
had not been tested for FA despite the fact that they live in the most contaminated
areas around the failed reactor (Baker et al., 1996). In the absence of data on
humans, small mammal populations may be one of the better models for evaluat-
ing risks of radioactive contamination for human populations.

Asymmetry has been estimated using many different indices (Palmer, 1996) that
have varying degrees of reliability. Recently a new approach has been applied to
the analysis of asymmetry using the linkage between geometric methods and con-
ventional multivariate statistics and is called geometric morphometrics (Bookstein,
1996a,b; Klingenberg and McIntyre, 1998; Leamy, 1984; Palmer, 1996). A mixed
model ANOVA is an essential part of this approach that allows reliable group-level
estimation of measurement error (Palmer, 1996). In this method, asymmetry in
overall size reflects positive correlations among differences between the inter-land-
mark distances on the left versus the right sides of skulls: ‘the individual asym-
metry parameter’ (Leamy, 1997). Shape asymmetry is measured as the deviation
between the pairs of the corresponding landmarks on the left versus those on the
right side (Klingenberg and McIntyre, 1998). Using both of these approaches along
with replicate measurements, allows the extraction and analysis of the patterns of
covariation among landmarks and reliable estimates of FA, DA, and measurement
error for each population. Our statistical approach followed closely that given by
Klingenberg and McIntyre (1998).

Our overall objective was to determine whether asymmetry was elevated in
radioactively contaminated populations compared to that in reference populations
of the yellow-necked mouse (Apodemus flavicollis), a common species living in
deciduous forests around the ChNPP and throughout Ukraine. Individual esti-
mates for FA and DA were made for both size and shape of the skull from mice
living in contaminated and reference areas. We wanted to also test for differences
among reference populations for the amounts of FA and DA. Temporal heterogen-
eity in FA and DA were tested using samples from the same area, but from differ-
ent years. Finally, we interpret our findings based on the radioactivity estimates for
the same mice at each of the contaminated locations (Oleksyk et al., 2002).

2. Materials and methods

2.1. Populations

We collected 13 population samples totaling 843 individuals of A. flavicollis from
10 sampling locations (Fig. 1). Six sampled populations came from within a
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roughly circular area of approximately 30 km from the failed reactor called the

Chornobyl exclusion zone. Three of the six samples came from the most contami-

nated 10-km zone in close proximity to the failed reactor. The other three samples

were obtained from the populations on the western edge of the 30-km exclusion

zone. Latitude and longitude were recorded for each location using a geographical

positioning system. The last group of sampled populations came from the unconta-

minated locations along a southwest to northeast transect across Ukraine. None of

the major plumes from the reactor went in the southwest direction. Two locations

from the contaminated area and one reference location were sampled in 2 different

years to check for the reproducibility of our results.
To estimate the degree of radioactive contamination affecting each of the con-

taminated populations, we used measures of ambient gamma activity collected with

thermal luminescent dosimeters (TLDs), as well as measurements of concentrations

of 137Cs in dry muscle reported elsewhere (Oleksyk et al., 2002). Background

Fig. 1. Locations where populations of Apodemus flavicollis were collected: 1. Uzhgorod 1996 (N ¼ 33;

N 48
v

44’, E 22
v

07’); 2. Kolochava 1996 (N ¼ 16, N 48
v

26’, E 22
v

37’); 3. Kolochava 1998 (N ¼ 17; N

48
v

26’, E 22
v

37’); 4. Stozhary 1998 (N ¼ 14; N 49
v

39’, E 25
v

43’); 5. Lysychyntsi (N ¼ 15; N 49
v

42’,

E 26
v

11’); 6. Ruzhyn 1998 (N ¼ 20; N 49
v

42’, E29
v

14’); 7. Tovsty Forest 1997 (N ¼ 11; N 51
v

23’, E

29
v

42’); 8. Tovsty Forest 2000 (N ¼ 12; N 51
v

23’, E 29
v

42’); 9. Tovsty Forest (Forestry) 2000

(N ¼ 33; N 51
v

22’, E 29
v

43’); 10. Emerald Camp 1999 (N ¼ 15; N 51
v

20’, E 30
v

09’); 11. Gluboke

Lake 1998 (N ¼ 10; N 51
v

27, E 30
v

04’); 12. Gluboke Lake 2000 (N ¼ 13; N 51
v

27, E 30
v

04’); 13.

Vyshenky 2000 (N ¼ 17; N 51
v

40’, 33
v

05’). Populations 7, 8, and 9 are 10 to 30 km from the failed
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values for the TLDs were estimated at the International Radioecology Laboratory
in Slavutych, Ukraine. Some TLDs were also left at the Savannah River Ecology
Laboratory, Aiken, SC.

2.2. Morphometrics

Our study concentrated on the fluctuating asymmetry (FA) of skulls. Each speci-
men was cleaned with dermestid beetles and dried. Skulls were leveled on a sand
base with the ventral surface up. We took pictures of the ventral surface of each
skull with a 35-mm camera using a close-up lens and a ring flash that went around
the lens to provide even lighting. We used color film with an ASA of 100. Two pic-
tures of each skull were taken to account for the effects of placement on the
measurement error. Each skull was repositioned after the first picture was taken.
Pictures were developed and scanned into individual bitmap files using a Nikon2
LS-2000 film scanner. Each picture was given a random name to prevent subjective
bias during the subsequent measurement steps (Palmer, 1994). Evolutionarily hom-
ologous landmarks (N ¼ 24) were chosen on each side of the skull similar to those
used in a study with house mice (Auffray et al., 1996) (Fig. 2). Landmarks were
distributed on the ventral surface of the skull to represent its entire surface (Fig. 2).
Landmark positions were digitized using a standard software package TPSDIG
(Rohlf, 2001). Landmarks were also independently placed on each of the pictures
twice to assess the effects of digitizing on the measurement error. Statistical analy-
ses were conducted using SAS 8.1 software (SAS, 1999).

2.3. Asymmetry of skull size

The FA of size and shape were estimated as described in Klingenberg and McIn-
tyre (1998). Asymmetry in overall size was estimated using the unit centroid size
(CS). The CS for each side of each skull was calculated as the square root of the
sum of squared distances from all of the landmarks on each side to their centroid
(Slice et al., 1996). Each skull was scaled to the unit CS in the analysis to eliminate
the effect of individual size. To assess the FA of the total skull size, we used an
ANOVA with CS as the dependent variable, side as a fixed effect and individuals
as a random effect as recommended by Palmer (1994). The interaction term in this
model represents the variation in left-right differences among individuals, which is
a measure of FA. In addition, the main effect of sides accounts for the directional
asymmetry and the main effect of individuals accounts for individual variation in
size. The individual � side interaction was used as the mean square for error to test
the significance of the main effects. The measurement error, which was the sum of
the placement and digitizing errors, was used to test for the significance of the indi
vidual � side interaction effect. The variance component of the interaction term
provides an unbiased estimate of FA in each population.

Degrees of freedom were calculated using the Satterthwaite approximation (Pal-
mer, 1994). FA of size was calculated in the same way separately for each sample
in the study. The difference between the populations in the FA of size was assessed
using Levene’s test on the absolute differences between the right and left CSs
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corrected for individual size (Palmer, 1994). Differences in individual population

FAs were tested using pairwise F-tests with the approximate degrees of freedom
calculated to the second decimal place. In determining significance, all probabilities

generated from F-tests were tested using a sequential Bonferroni procedure to

adjust for type I errors (Palmer, 1994). Differences between samples in DA were

tested using a three-way ANOVA with sides (fixed), individuals (random) and

populations (fixed) as main effects, and replicated measurements (Lamb et al.,
1990). Differences among samples in the amount of DA were assessed as a sides �
population interaction effect compared to the interaction individuals

(sides � population) effect mean squares. Obtained probabilities were adjusted

using a sequential Bonferroni procedure.

Fig. 2. Landmark positions on the ventral surface of the skull of Apodemus flavicollis. Landmarks on the

left side are numbered 1 to 24. Identical landmarks were digitized on both left and right sides of the

skull. This picture is not drawn to scale.
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2.4. Asymmetry of skull shape

We analyzed the shape asymmetry of skulls by superimposing the configurations
of landmarks from each side of the skull using a Procrustes superimposition (Klin-
genberg and McIntyre, 1998; Rohlf and Slice, 1990). First, landmark configura-
tions of the left sides of the skulls were reflected to their mirror images by
subtracting the x-values from a constant (e.g. 20) to align corresponding land-
marks of right and left sides. After configurations were scaled to unit CS, a point
with average coordinates (centroid) from the right side was given the same coordi-
nates as the centroid from the corresponding left side of the skull. Then, configura-
tions were rotated around their centroid to achieve the best fit. This procedure is
included in the software TPSRELW (Rohlf, 2000). The output of the Procrustes
procedure contains the coordinates of superimposed landmarks. Asymmetry can
then be measured as the deviations between the pairs of the corresponding super-
imposed landmarks.

We used the same two-factor mixed-model ANOVA as previously to calculate
sums of squares for each of the effects on each x and y coordinate. Then, we calcu-
lated the overall sums of squares for each of the main effects, interaction term and
the error by adding the individual sums of squares for each of the effects across the
x and y coordinates (Klingenberg and McIntyre, 1998). Degrees of freedom for the
shape ANOVA were the degrees of freedom for each of the effects multiplied by
the number of landmark coordinates minus four. The individual � side interaction
was used to test the significance of the main effects. The measurement error was
used to test for the significance of the interaction effect. The variance component
for the individual � side interaction effect represented our best estimate of FA.

We used multiple F-tests to compare the values of FA and DA of shape between
each pair of populations and to generate appropriate p-values. Then, once more,
we applied the sequential Bonferroni procedure to ensure the appropriate table-
wide probability of type I error as in Palmer (1994). The difference between popu-
lations was considered statistically significant only when the pairwise p-value was
lower than the revised p-value.

2.5. Correlation of the overall asymmetry and 137Cs in the dry muscle tissue

Two different estimates of FA were used to relate the amounts of the overall
asymmetry in the exposed individuals to the amounts of 137Cs in the dry muscle
tissue. First, we used the absolute difference between the individual’s CS of right
and left sides as the approximation of the overall asymmetry of individual size. In
addition, we used a measure of Procrustes distance between left and right sides
(Bookstein, 1991). To calculate this measure, we subtracted the Procrustes aligned
coordinates of the landmark configuration of right side from the corresponding
coordinates of each individual landmark on the left side of the skull. Then we
added the squared differences and calculated the square root of the resulting sum
(Klingenberg and McIntyre, 1998). This distance measure is similar to the mean
absolute difference between the left and right side (Palmer, 1994), but since it is
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initially standardized to unit CS during the Procrustes procedure, it is independent
of overall size, except for allometry (Klingenberg and McIntyre, 1998). We used
the nonparametric Spearman’s correlation (rS) to assess the degree of association
between the individual CS differences, individual Procrustes distances, and the
amounts of 137Cs in the dry muscle of individual mice.

3. Results

3.1. Measures of radioactivity

Populations at Gluboke Lake received the highest amounts of ionizing radiation
from their environments: 4.146 lGy/h. The second highest doses were found at
Emerald Camp averaging at 0.297 lGy/h. Populations at Tovsty Forest and
Tovsty Forest (Forestry) received the lowest dose averaging at 0.132 and 0.107
lGy/h. These results, as well as the amounts of the intramuscular 137Cs in these
animals, were reported previously in our study of frequency distributions of radio-
active contaminants at Chornobyl (Oleksyk et al., 2002).

3.2. Departures from normality and measurement error

Antisymmetry was examined using Kolmogorov–Smirnov tests of the frequency
distribution of the CSs compared to an expected normal distribution. If present,
antisymmetry would artificially inflate the levels of FA. The frequency distributions
of data for each population were inspected for the presence of bimodality or
unusual outliers. Outliers were traced back to the corresponding individuals whose
landmarks were digitized again. The three types of outliers that existed were asso-
ciated with handling (e.g. broken skull), severe trauma, and marks of disease. Indi-
viduals with these particular problems were removed from the analysis. Finally,
after adjusting the overall error rate to the 0.05 level, there were no significant
deviations from normality as indicated by the Kolmogorov–Smirnov test. Thus, we
concluded that there was no evidence of antisymmetry in any of the studied popu-
lation samples.

Measurement error was addressed during the F-tests. We tested whether our FA
estimates were significantly larger than predicted due to error alone. There were
three populations (Vyshenky, Tovsty Forest (Forestry), and Ruzhyn), where it was
not possible to calculate a reliable estimate of the FA of shape because of the high
measurement error. All of the other measurements of FA of size and shape were
statistically significant with p ¼ 0:001 in every case. Overall, our estimates of shape
asymmetry appeared to yield results with higher significance and more degrees of
freedom than those of size asymmetry.

3.3. Directional asymmetry

The presence of DA indicates that one side is consistently and significantly differ-
ent than the other side. In the mixed model ANOVA procedure, DA is tested
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along with the FA for both the size and shape. The main effect of sides in the
two-way ANOVA estimates directional asymmetry and sides � population interac-
tion in the three-way ANOVA tests for the differences among populations in direc-
tional asymmetry. DA of size was significant only for two populations: Tovsty

Forest (Forestry) (DA ¼ 8:76 � 10�8; p < 0:005) and Tovsty Forest 1997 (DA ¼
4:79 � 10�7; p < 0:0001). There was an overall difference between populations in
the amount of DA of size (mixed-model ANOVA, F12;216 ¼ 4:29; p < 0:0001). DA

of shape was significant for all populations except the one from Emerald Camp
(Table 1). There was an overall difference between populations in the amount of
DA of size (mixed-model ANOVA, F528;5544 ¼ 9:04; p < 0:0001). Values of DA,

degrees of freedom and the Bonferroni corrected significant differences in multiple
pairwise comparisons are presented in Table 1. Most of the populations in the
upper part of the table came from the northern contaminated localities at
Chornobyl.

3.4. Fluctuating asymmetry

Asymmetry in overall size represents a positive correlation among left–right dif-
ferences of the average distance between all of the landmarks on that side and their
geometrical average (centroid size, CS). In our case, FA of size was significantly
greater than the variance expected due to the measurement error for all of the sam-
ples except the three mentioned earlier (Vyshenky, Tovsty Forest (Forestry) and
Ruzhyn). These samples were not used in the pairwise comparisons. The results of
Levene’s test indicate significant differences among samples in the differences
between the left and right CS (F12;831 ¼ 8:36; p < 0:0001). All of the samples from
the 10-km exclusion zone had high values for FA, while those for the reference
samples had low values of FA and samples from the 30-km exclusion zone had
intermediate values (Fig. 3). On average, FA in samples from Gluboke Lake and
Emerald Camp was 3.6 times as high as in the reference areas, and 2.3 times higher
than in the less contaminated samples from Tovsty Forest and Tovsty Forest (For-
estry) 30-km from the reactor (Fig. 5). However, none of the samples from the
same location but different years was significantly different for FA.

Asymmetry of shape represents a positive correlation of the differences between
the coordinates of the optimally aligned landmarks of the superimposed configura-
tions of the left and right sides resulting from application of the Procrustes pro-
cedure. All FAs of shape were significantly larger than the variance expected due
to measurement error (p ¼ 0:0001; Table 2). We ranked our populations by their
corresponding FA values and performed multiple F-tests with the subsequent Bon-
ferroni correction. The samples from the 10-km exclusion zone have the highest
ranks and FA values, while the reference samples and those from the less contami-
nated parts of the exclusion zone had lower ranks. The FAs of shape in both of the
samples from Gluboke Lake and a sample from Emerald Camp were significantly
greater than those in the rest of the samples, but were not significantly different
from each other (Table 2, Fig. 4). The FAs of the samples from the Tovsty Forest
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population also did not differ from each other. Finally, the average FA in the
10-km exclusion zone is 1.8 times higher than the average FA in the reference
populations, and 3.7 times higher than the average FA in the less contaminated
populations within the 30-km distance from the reactor (Fig. 5).

Fig. 3. Mean values of fluctuating asymmetry for size with populations arranged by their latitude from

the southern most (1) to northern most location (13) as in Fig. 1. Values for reference populations are

indicated by white bars, while populations from the 30 km contaminated zone are given in gray, and

those from within the 10 km area from the Chornobyl reactor are given in black. Negative mean values

for populations 6 and 7 are not shown.

Fig. 4. Values of the fluctuating asymmetry (FA) of shape ranked by the latitude of the location from

the southern most (1) to northern most location (13) as in Fig. 1. Control populations are indicated in

white, populations from the 30-km zone are given in gray, and populations from within the 10-km area

from the Chornobyl reactor are represented in black. Significance for each of the values and pairwise

differences are presented in Table 2.

T.K. Oleksyk et al. / J. Environ. Radioactivity 73 (2004) 1–2012



3.5. Correlation of asymmetry in the Chornobyl exclusion zone

There was an overall significant correlation between the differences of the land-
mark coordinates of the Procrustes aligned configurations of the left and right
sides and the amounts of intramuscular 137Cs in the individual mice from the
Chornobyl area (rS ¼ 0:28; p < 0:001). There were also significant correlations
between the radiocesium concentrations and CS (rS ¼ 0:09; p ¼ 0:03) and between
the two estimates of the overall asymmetry (rS ¼ 0:41; p < 0:0001). There were no
significant correlations between the Procrustes differences and the concentrations of
intramuscular 137Cs or between the amounts of radiocesium and CS differences
within any of the samples. We were unable to separate different types of asym-
metry and the measurement error associated with the procedures used to collect the
data in this analysis. These results represent an overall measure of asymmetry
assuming consistent levels of measurement error across populations. There was a
significant correlation between the FA of shape and the distance to the failed reac-
tor for the locations in the Chornobyl exclusion zone (both the 10- and 30-km

zones; r2 ¼ 0:94; p ¼ 0:001: Fig. 5). However, FA of size did not correlate with

distance from the reactor (r2 ¼ 0:53; p ¼ 0:083: Fig. 5).

4. Discussion

Ionizing radiation should impose significant stress on individual animals in land-
scapes contaminated during the 1986 Chornobyl meltdown. We predicted that
higher values of FA should be observed in animals from the contaminated sites

Fig. 5. Correlation between the values of fluctuating asymmetry of shape (black circles) and the distance

to the Chornobyl reactor (r2 ¼ 0:94), and lack of correlation between fluctuating asymmetry of size

(gray circles) and distance to the reactor (r2 ¼ 0:54).
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closest to the failed reactor as opposed to the uncontaminated reference sites else-
where in the Ukraine. Indeed, higher FAs were documented for samples taken
from populations of rodents living in areas closest to the failed Chornobyl reactor
for asymmetry of both types of analysis measurements (size and shape). Fluctuat-
ing asymmetry of shape was highest in the three samples from the most contami-
nated locations in the Chornobyl exclusion zone (Fig. 4). Although directional
asymmetry of shape was also highest in the contaminated samples, it was not sig-
nificantly different from that of most of the reference samples because of the high
variance among the samples (Table 2). Finally, values of shape FA were highly
correlated with distance from the reactor. However, samples from the less contami-
nated areas around the failed reactor did not exhibit FAs significantly different
from those of reference samples. Populations that were sampled more than once
did not show a significant difference between years. Thus, our results were robust
and replicable over time. These data support our hypothesis about expected increa-
ses of FA in rodents from the contaminated areas at Chornobyl (Oleksyk et al.,
2001).

Differences between the landmark coordinates of the Procrustes aligned config-
urations of the left and right sides of the individual mice correlated with the con-
centration of intramuscular 137Cs, but not within any of the individual samples.
The lack of correlation within the samples is likely due to the limited range of the
x and y variables for each sample relative to that across (Chesser et al., 2000; Olek-
syk et al., 2002). There might also be other contaminants that cause elevated levels
of asymmetry, such as radioactive 90Sr that were not accounted for in this analysis.
In addition, intramuscular contamination is not the only source of exposure for the
affected populations. Animals could also receive a substantial dose of external radi-
ation from their environment that may not correlate with the 137Cs concentration
in muscle. Thus radiocesium concentrations represent only a rough approximation
of the total exposure. Finally, we may lack statistical power to detect this relation-
ship in each population.

Although FA tends to increase in populations exposed to pollution (Møller and
Swaddle, 1997), it should be considered significant only when the level of FA of
stressed populations is above the background level of FA in unstressed popula-
tions. In our study multiple populations of the same species were sampled in differ-
ent environments across a large geographical area south and north of Chornobyl.
There were significant differences between the reference populations in the amounts
of FA and DA (Tables 1 and 2). Therefore, conclusions about radiation effects at
Chornobyl should always be questioned when there are no or very few reference
populations. In these types of studies and probably others, it seems prudent to
always expect that reference populations will differ significantly from each other,
and there is no way to know whether a particular reference population has a high
or low value for the response variable of interest without replicate sampling of ref-
erence populations. The majority of the samples should always come from the ref-
erence sites. However, despite the differences in geographical locations of the
sampled populations or their environmental conditions, FA values were greatest in

15T.K. Oleksyk et al. / J. Environ. Radioactivity 73 (2004) 1–20



populations that should have been maximally affected by the radioactivity and
were located closest to the reactor (Fig. 5).

Our results are consistent with the predicted increase in the levels of FA in popu-
lations exposed to anthropogenic contamination. However, the mechanism(s) by
which this occurs is not clear. Some of the populations may experience high levels
of inbreeding and associated higher mortality rates. If the differential mortality
hypothesis were true for these populations, we would expect FAs in the most con-
taminated ones to be similar or lower than those of ‘moderately’ contaminated
populations. However, this was not the case (Figs. 3 and 4). On the other hand, the
highly skewed microspatial distributions of contaminants in the populations from
Chornobyl (Oleksyk et al., 2002) could result in only a few individuals dying
because they lived in close proximity to highly contaminated areas. Migrants from
relatively uncontaminated sites in the area could constantly replace them. With
high migration rates, even if selective mortality occurs because of life-threatening
doses (Chesser et al., 2000), it is unlikely to result in a significant decrease in over-
all levels of FA in a population.

Other field studies have linked FA to toxic agents in contaminated areas. Radi-
ation from Chornobyl affected levels of FA in three species of plants in areas near
the Chornobyl exclusion zone (Møller, 1998). Several studies show that plants
increase their FAs close to sources of aerial contamination (Graham et al., 1993;
Kozlov et al., 1996). Higher levels of FA have been found in fish from the waters
around sources of industrial pollution and in ponds with high concentrations of
mercury and low pH (Zakharov, 1981). High heavy metal concentrations are corre-
lated with high FA values in common shrews (Pankakoski et al., 1992). Gray seals
have higher levels of FA in highly polluted areas than in relatively pristine areas
(Zakharov et al., 1989). Finally, FA was associated with heavy metal pollutions in
rodents (Cavedon et al., 1990; Nunes et al., 2001). On the other hand, some studies
have failed to demonstrate increases in FA with pollution (Gileva and Kosareva,
1994; Rabitsch, 1997). However, overall FA seems to be associated with environ-
mental contamination of various sorts, including radiation at least under some
conditions.

Asymmetry represents a measure of the developmental instability of a phenotype
and may be associated with important characteristics affecting the individual fit-
ness. Some studies argue that asymmetric individuals generally have lower fec-
undity and poorer survival than more symmetrical individuals in populations
(Møller, 1997). These differences arise from individuals with lower competitive abil-
ity, and higher risks of predation and parasitism compared to that of their more
symmetrical counterparts. It is likely that individuals in highly contaminated areas
would have overall lower average fitness values which creates population sinks
(Pulliam, 1988). There is also a contrary point of view that the evidence for con-
nection between developmental stability and fitness is not clear (Clarke, 1988).
Finally, some other authors argue that FA is not always a good measure of
environmental quality because of the selective process of ‘differential mortality’
among the animals exposed to toxic agents (e.g. Floate and Fox (2000)). A result
of this type of selection would be that at locations with higher levels of exposure a
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robust subset of individuals would survive and express lower levels of FA. This in
fact may be what is observed in some instances (Gileva and Kosareva, 1994). Thus,
individuals in the contaminated areas around the Chornobyl plant may suffer
changes that result in long-term evolutionary consequences. However, it is unlikely
that these changes would persist in the local populations because of the substantial
gene flow between among those populations and the populations in the uncontami-
nated areas nearby.

Failure to detect higher FAs in populations with lower levels of contamination
may indicate a threshold of exposure somewhere between 0.132 and 0.297 lGy/h
(i.e. the difference between the 10 km zone and 30 km zone exposure rates reported
here) over which FA significantly increases above its ambient level (Figs. 3, 4 and
5). However, since most contaminated environments in the United States and Eur-
ope are expected to be decontaminated to the levels much lower than those seen in
this study, FA may not be useful in validating the effectiveness of clean-up efforts
at these lower levels.

In conclusion, highly contaminated populations of A. flavicollis expressed signifi-
cantly higher levels of FA calculated both as asymmetry of size and shape. How-
ever, FA values of the less contaminated populations in the outer exclusion zone
were not different from the FA values expressed in most of the reference popula-
tions from the relatively uncontaminated areas in Ukraine. In addition, we found
large differences in the amounts of FA and DA among reference populations from
the uncontaminated regions. Higher FA values probably indicate that populations
from the localities close to the failed Chornobyl reactor are experiencing significant
levels of stress during their development. These highly contaminated populations
may also be accumulating mutations that could disrupt normal development in the
affected individuals. Finally, future studies of FA in contaminated areas must
include sufficient reference populations to establish the expected background level
of FA in an area before conclusions can be reached about the effects of con-
taminants.
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