Unit Vectors

Instead of explicitly writing Ax = 5, Ay = 0; Bx = 5, By = 5; Cx = - 10, Cy = 0; and Dx = - 5, Dy = 5, we can write this same information in a different form. We can write

A = 5 i + 0 j

B = 5 i + 5 j

C = - 10 i + 0 j

D = - 5 i + 5 j

i and j are "unit vectors" in the x- and y-directions. Being "unit vectors", they each have a magnitude of one. They carry only the direction information.

Now we can write

R = A + B + C + D

R = (5 i + 0 j) + (5 i + 5 j) + (- 10 i + 0 j) + (- 5 i + 5 j)

R = ( 5 + 5 - 10 - 5 ) i + ( 0 + 5 + 0 + 5 ) j

R = - 5 i + 10 j

Now we know the components of the resultant,

Rx = - 5

and

Ry = 10

and we can proceed exactly as before to recombine those to find the magnitude and the direction.

To explicitly remind ourselves that i and j are "unit vectors", they are sometimes (or oftentimes) written with a "hat" or "caret" above them,

Vector Components

Displacement, Velocity, and Acceleration
Return to ToC, Vectors and 2D Motion

(c) 2002, Doug Davis; all rights reserved