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Chapter 3, Exercises:

32. The difficulty in proving the SSS criterion is that the only congruence criteria we have at this
point are SAS and ASA, which both, obviously, require us to know at least one pair of congruent
angles. But we are given no information about angles! What to do? Clearly, we must prove that a
pair of angles is congruent by using what we know about the corresponding sides of the triangles.
The only theorem we have which proves that angles are congruent given that sides are congruent
is Proposition 3.10, the “base angles theorem.” Therefore, our strategy has to be to set up a figure
with some isosceles triangles in it. Now for the details.

Given triangles 4ABC and 4DEF with AB ' DE, BC ' EF , and AC ' DF , let G be the
unique point on the opposite side of

←−→
AC from B such that 4DEF ' 4AGC (Corollary to SAS).

Since congruence is transitive for segments and angles, it immediately follows from the definition
that it is transitive for triangles; therefore, it suffices to prove 4ABC ' 4AGC. Furthermore, by
the definition of congruence for triangles and CA2 it follows, of course, that AB ' AG, AC ' AC,
and BC ' GC. We may thus assume without loss of generality that A = D, G = E, and C = F .
That is what the text means by “reduce to the case that A = D , C = F , and the points B and
E are on opposite sides of

←−→
AC .”

By definition of opposite sides, BE intersects
←−→
AC at a point G (not to be confused with our

earlier use of a point G, now discarded). By BA3, either G = A, G = C, A ∗ G ∗ C, G ∗ A ∗ C,
or A ∗ C ∗G. The same proof works for the first two cases by exchanging the labels of A and C.
Similarly, the same proof applies to the last two cases. Thus it suffices to consider three cases.

Case 1. A ∗ G ∗ C. We have ∠EBC ' ∠BEC and ∠EBA ' ∠BEA by Proposition 3.10. Ray−−→
BE is between rays

−−→
BA and

−−→
BC by Proposition 3.7. Similarly, ray

−−→
EB is between rays

−−→
EA

and
−−→
EC . So ∠ABC ' AEC by Proposition 3.19 (Angle Addition). By SAS, 4ABC ' 4AEC.

Case 2. G = A. Just apply Prop. 3.10 and SAS. (Note that it follows from the definition of
congruence for triangles, the definition of a right angle, and the definition of perpendicular that
BE ⊥ AC, a useful fact about the median from the apex of an isosceles triangle.)

Case 3. Similar to Case 1, but use angle subtraction instead of angle addition.

Chapter 4, Exercises:

4. Let l and m be parallel lines, and assume line n intersects line m at point P . If n does not intersect
l, then n and m are distinct lines through P that are parallel to l, contradicting Hilbert’s Parallel
Postulate. Thus Hilbert’s Parallel Postulate implies that if a line intersects one of two parallel
lines, it intersects the other. Conversely, let l be a line and P a point not on l. Suppose there are
two lines through P , m and n, that are parallel to l. Then n intersects one of two parallel lines
(m) but not the other (l).

5. Assume Hilbert’s Parallel Postulate, and let l and m be parallel lines cut by a transversal t at
points P and Q, respectively. Let R and S be points on l and m, respectively, that are on opposite
sides of t, so ∠RPQ and ∠SQP are alternate interior angles (IA2, BA2). By CA4, there is a
unique ray

−−→
PT on the same side of t as R such that ∠TPQ ' ∠SQP . By the Alternate Interior
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Angle Theorem,
←−→
PT ‖ m. By Hilbert’s Parallel Postulate,

←−→
PT = l =

←−→
PR . Since R and T are

on the same side of t,
−−→
PR and

−−→
PT are not opposite rays, so

−−→
PT =

−−→
PR . Thus ∠TPQ = ∠RPQ,

and ∠RPQ ' ∠SQP , by CA5.

Conversely, assume the converse to the Alternate Interior Angles Theorem, let l =
←−→
QS be a line,

and let P a point not on l. Let m =
←−→
PR and n =

←−→
PT be lines parallel to l, where R and

T are chosen on the opposite side of
←−→
PQ from S. By the converse to the AIAT, both ∠RPQ

and ∠TPQ are congruent to ∠SQP ; hence, by CA5, they are congruent to each other. By the
uniqueness part of CA4,

−−→
PT =

−−→
PR , so m = n by IA1 (uniqueness).

8. Assume Hilbert’s Parallel Postulate. Given 4ABC, let l be the unique line through B that is
parallel to

←−→
AC . Let P and Q be points on l such that P is on the opposite side of

←−→
AB from

C and Q is on the opposite side of
←−→
BC from A. By Proposition 4.8, the converse of the AIAT

holds, so ∠PBA ' ∠CAB and ∠QBC ' ∠ACB.

Claim:
−−→
BC is between

−−→
BA and

−−→
BQ . Proof: Segment AC contains no point on line l because

lines
←−→
AC and l are parallel; therefore, A and C are on the same side of l. Since A and Q are on

opposite sides of line
←−→
BC , AQ intersects

←−→
BC at a point R. By Proposition 2.1, A and R are on

the same side of l. (Q is the unique point of intersection of
←−→
AQ and l, and A ∗R ∗Q.) By BA4,

C and R are on the same side of l, so R is on ray
−−→
BC rather than its opposite ray. Thus

−−→
BC is

between
−−→
BA and

−−→
BQ by Proposition 3.7.

After writing the above, I realized that there was a more efficient route to this point. This often
happens when working on a proof, so rather than just replace what I wrote above, I leave it for
you to compare. The key to a simpler proof is the selection of initial properties used to choose
points P and Q. Let P and Q be points on l such that P and A are on the same side of

←−→
BC , and

Q and C are on the same side of
←−→
BA . Now it follows directly from the definition that C is in the

interior of ∠ABQ. (Just use our assumption about Q and the fact that
←−→
AC ‖ l.) Therefore,

−−→
BC

is between
−−→
BA and

−−→
BQ , and furthermore Q and A are on opposite sides of

←−→
BC by the Crossbar

Theorem. Similarly, P is on the opposite side of
←−→
AB from C. Once again, by the converse of the

AIAT, ∠PBA ' ∠CAB and ∠QBC ' ∠ACB.

Claim:
−−→
BP and

−−→
BQ are opposite rays; hence, angles ∠PBA and ∠QBA are supplementary.

Proof: Just use the corollary to BA4 to show that P and Q are on opposite sides of line
←−→
BC .

The claim follows from the definition of opposite sides and Proposition 2.1.

(∠PBA)◦ + (∠QBA)◦ = 180◦ by Theorem 4.3 (part A(5)). (∠QBC)◦ + (∠CBA)◦ = (∠QBA)◦

by Proposition 4.3(part A(3)). By substitution (we’re just doing algebra with numbers now),
(∠A)◦ + (∠B)◦ + (∠C)◦ = 180◦.

13. (a) Suppose segment AB has two midpoints, M and N . By Propositions 3.5 (AB = AM ∪MB)
and 3.3, we may assume without loss of generality (that is, switching the labels of M and
N if necessary) that A ∗M ∗ N ∗ B. By definition, AM < AN . By definition of midpoint,
AN ' NB, so by Proposition 3.13, AM < NB. Similarly, BN < MA, contradicting
Proposition 3.13.

17. (a) Hint: 4AOB is isosceles, by definition of a circle.
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(b) Hint: Let M be the midpoint of AB. It suffices to prove that MO ⊥ AB. Use congruent
triangles.

18. Theorem of Thales in Euclidean geometry: An angle inscribed in a semicircle is a right angle.

Proof: In the figure in the text, in which the center of the circle is O and points A, B, and C lie on
the circle, with B ∗O ∗C, observe that OB ' OA ' OC (definition of circle), so ∠OBA ' ∠OAB
and ∠OCA ' ∠OAC by Proposition 3.10. Angles ∠BOA and ∠COA are supplementary, so their
sum is 180◦ (Theorem 4.3 (part A(5)). For convenience in doing calculations, set (∠OBA)◦ =
(∠OAB)◦ = x◦ and (∠OCA)◦ = (∠OAC)◦ = y◦; here, Theorem 4.3 (part A(2)) has been applied
to deduce that the measures of congruent angles are equal. The sum of the angles in each of4OAB
and 4OAC is 180◦ (Proposition 4.11); hence, removing the angles at O we obtain 2x + 2y = 180,
from which it follows algebraically that (∠BAC)◦ = (x + y)◦ = 90◦. By Theorem 4.3(part A(1)),
∠BAC is a right angle.

Theorem of neutral geometry: If an angle inscribed in a semicircle is a right angle, then there
exists a right triangle with zero defect.

Recall that the defect of a triangle is the amount by which its angle sum falls short of 180◦ (so in
Euclidean geometry the defect of every triangle is zero). Note: to deduce the conclusion of this
theorem, we only need to assume that there is one angle inscribed in a semicircle that is a right
angle. It is not necessary to assume that every angle inscribed in a semicircle is a right angle
(although later we will be able to prove that is the case, if one is).

Proof: Let ∠BAC be a right angle inscribed in a semicircle. We claim that the defect of 4BAC
is zero; that is, its angle sum is 180◦. This time around, we cannot assume the angle sum of any
triangle is 180◦, but labeling the angle measures as before, we see from the given and Theorem
4.3 that x + y = 90 (since (x + y)◦ is the measure of ∠BAC, which is assumed to be a right
angle). Thus, reversing the calculation above, we see that 2x + 2y = 180. Since (∠B)◦ = x◦ and
(∠C)◦ = y◦, the defect of 4BAC is zero.
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