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Abstract

Assume that two particles on the sphere leave the equator moving due
south and travel at a constant and equal speed along a geodesic colliding at
the south pole. An observer who is unaware of the curvature of the space will
conclude that there is an attractive force acting between the particles. On
the other hand, if particles travel at the same speed (initially parallel) along
geodesics in the hyperbolic plane, then the particle paths diverge. Imagine
two particles in the hyperbolic plane that are bound together at a constant
distance with their center of mass traveling along a geodesic path at a con-
stant velocity, then the force due to the curvature of the space acts to break
the bond and increases as the velocity increases. We will give the formula
for the apparent force between the particles induced on 2 dimensional space
forms of non-zero curvature.
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1. Introduction

In this paper we wish to study the apparent force on particles traveling in
a two dimensional space with constant sectional curvature. It is well known
that geodesics in positively curved space will tend to converge. On the other
hand, particles traveling along geodesic paths in negatively curved space will
tend to diverge.

Even though we will restrict our attention to particles traveling on sur-
faces, it should be the case that these results will apply to particles traveling
in higher dimensional space provided that the problem closely approximates
a space of constant curvature.

Let M denote a 2-dimensional non-trivial space form (i.e. Riemannian
manifold with constant non-zero sectional curvature) with Riemannian met-
ric g(, ). We will assume that the mass m is constant unless stated otherwise.
Let σ(s) denote a geodesic path in the manifold M such that σ(0) = x0 and

d

ds
σ(s)|s=0 = uo

where the magnitude of uo is 1. In fact, the speed of a geodesic path is always
assumed to be 1. We define an inertial path, µ(t), as a path along a geodesic
such that the speed is constant and equal to the initial speed vo. In other
words:

d

dt
µ(t) = vo

d

dt
σ(t),

where σ(t) is a geodesic. We say that a path is a constant speed path if it
has no linear acceleration component, i.e.

‖dλ
dt
‖ = α,

where α is a constant. Let λ(t) denote a constant speed path. The external
force required for the particle to follow this path is given by

F = m
d2λ

dt2
.

An example of such a path is given by the path of a orbiting satellite in a flat
space. The external force of gravity gives the satellite a path which is not
geodesic with respect to the usual metric (i.e. the flat metric). Let p1 and
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p2 denote particles with mass m traveling along constant speed paths λ1(t)
and λ2(t) respectively, such that

ρ(λ1(t), λ2(t)) = d

where ρ(, ) denotes the minimum distance in the manifold M and d is a
constant. Assume that the midpoint connecting the particles at each point
travels along a geodesic path. In other words, the particles move along con-
stant speed paths at a fixed distance from the center of mass (i.e. midpoint),
while the center of mass moves along an inertial path. If the particles were
connected by a rigid rod of zero mass then they would exhibit this behav-
ior. We will say that such a pair of particles along with their respective
paths are coupled. We choose a oriented frame {e1, e2} such that e1 is a unit
vector in the direction of the velocity vector for the midpoint in a coupled
system. We shall refer to the direction associated to e2 as up and its opposite
as down. The force required to keep each on its path is the coupling force.
This is precisely the tension in some imaginary connecting rod. The coupling
force is positive when paths are convergent and negative when the paths are
divergent. The coupling force is defined by:

Fc(t) = m
d2λ1

dt2
−md2λ2

dt2
.

We will prove the following theorems:

Theorem 1. Let M be a space form with positive curvature K = 1/r2 > 0,
then the coupling force between two coupled particles of mass m moving at
speed v at a distance d/2 from a central inertial path is outward and is given
by

Fc =
2mv2

r
tan(d/2r) = 2mv2

√
K tan(

√
Kd/2)

Theorem 2. Let M be a space form with negative curvature K = −k2 < 0,
then the coupling force between two particles of mass m moving at speed v at
a distance d/2 from the central inertial path is inward and is given by

Fc = −2mv2k tanh(kd/2).

We note that this force is essentially a result of the geometry of the man-
ifold. This appears to be rather obvious although the authors are not aware
that such an observation has been made in a mathematical context. We have
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considered only space forms in the development here since the mathematics
is much simpler than in the general case. Theorems of this kind should be
possible in spaces of strictly positive or negative sectional curvature, but
in these cases, choosing paths with constant speed that are equidistant be-
comes problematic. It seems that some sort of linear acceleration might be
necessary to keep the particles equidistant.

2. Proof of Theorem 1

In this section we consider the case M = S2 with sectional curvature
K = 1/r2. We observe that every pair of distinct geodesics converge on S2.
As an example of this, consider two particles which leave the equator of the
sphere traveling due south at a constant and equal speed. The partcles will
collide at the south pole. In other words, the corresponding inertial paths
collide at the intersection point of the two geodesics determined by these
paths. Therefore, the paths are decreasing in distance as time goes on.

In the more general setting such that the sectional curvature of a complete
manifold is positive and bounded below by α > 0 we have that conjugate
points on geodesics will occur at a distance less than π/

√
α [cf. 1, pg 74]. In

addition, a Jacobi field exists perpendicular to the geodesic which vanishes at
the conjugate points. The Jacobi field induces a family of geodesics defining
the congugate points. It is evident from this that paths with parallel initial
vectors whose inital points are sufficiently close will collide though in this
case it is not clear that the particles themselves will necessarily collide. It
should be possible to choose a variation of the speed to effect the collision
however.

Nevertheless, as the maximum distance between the induced geodesics
is decreased the case of the space of constant sectional curvature will be
approximated. Then as the geodesics converge a compensating force must
be applied externally to the two particles to keep them at a constant distance
from each other. In other words, the particles can not follow inertial paths
while maintaining a constant distance. We shall calculate this force in the
case of constant sectional curvature K = 1/r2.

Let
µ(t) = r(cos(θ) cos(ωt)̂i + cos(θ) sin(ωt)̂j + sin(θ)k̂).
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denote a path in S2 with constant speed v, where the angular velocity (with
respect to the center of the circle) is ω = v/(r cos(θ)). Note that this path
is just a circlular curve at latitude θ on the sphere in the usual sense. We
begin by computing the second derivative in IR3:

d2µ

dt2
= −rω2 cos(θ) cos(t)̂i− rω2 cos(θ) sin(t)̂j.

This vector must be projected onto the tangent space in the plane. The
corresponding tangent vector is given by:

T⊥ = − sin(θ) cos(t)̂i− sin(θ) sin(t)̂j + cos(θ)k̂.

We obtain the force equation:

F = m(
d2µ

dt2
·T⊥)T⊥,

F = m
rv2

r2 cos2(θ)
(sin(θ) cos(θ) cos2(t) + sin(θ) cos(θ) sin2(t))T⊥,

F = m
v2

r
tan(θ)T⊥

Consequently the coupling force for two particles with center of mass on a
great circle is:

Fc =
2mv2

r
tan(θ).

Recall that the distance along an arc is given by d = r∆θ and K = 1/r2 so
we have

Fc = 2mv2
√
K tan(

√
Kd

2
).

Let W denote the kinetic energy then we have

Fc ≈ mv2Kd = 2WKd,

when d is sufficiently small.
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3. Proof of Theorem 2

In this section we consider the case of a space form M with sectional
curvature K = −1/k2.

We define the Minkowski space

IR2,1 = {(x, y, z)| x, y, z ∈ IR}

such that the distance between points P = (x1, y1, z1) and Q = (x2, y2, z2) is
given by

ρ(P,Q) =
√

(x1 − x2)2 + (y1 − y2)2 − (z1 − z2)2.

Then the hyperbolic plane H2(−k) is given by the set locus

x2 + y2 − z2 = − 1

k2

or equivalently,

x2 + y2 +
1

k2
= z2

subject to the induced metric. We obtain a coordinate system for the hyper-
bolic plane under the projection

Π : R2,1 −→ R2

where
Π(x, y, z) 7→ (x, y).

Now define the linear transformation from R2,1 onto R2,1 by the matrix

A =




√
k2α2 + 1 0 αk

0 1 0
αk 0

√
k2α2 + 1


 ,

where the matrix acts on column vectors of R2,1. This is an isometry on

the submanifold H2(−k) which leaves the space {(x, 0,
√
x2 + 1/k2)|x ∈ IR}

invariant. Similarly, the isometry

B =




1 0 0
0
√
k2β2 + 1 βk

0 βk
√
k2β2 + 1


 ,
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leaves the space {(0, y,
√
y2 + 1/k2)|y ∈ IR} invariant. On the other hand,

we observe that the action of A on the coordinate line associated to the y-axis
yields

A :




0
y

1
k

√
k2y2 + 1


 7→




α
√
k2y2 + 1
y

1
k

√
(k2α2 + 1)(k2y2 + 1)


 .

If we compose this isometruy with the coordinate projection operator then
the image of the y-axis (α

√
k2y2 + 1, y) satisfies

x2

α2
− y2

(1/k2)
= 1.

In other words, if we think of IR2 as the local coordinate system for the
hyperbolic plane then the mapping takes the geodesic associated to the y-axis
into a hyperbola as shown above. The action of A is similar to a translation
in the direction of the x-axis.

Now consider the composition of A with a similar translation in the y-axis
direction:

B◦A




0

y

√
k2y2 + 1




= B :




α
√
k2y2 + 1

y

1
k

√
(k2α2 + 1)(k2y2 + 1)



7→




α
√
k2y2 + 1

y
√
β2k2 + 1 + β

√
(k2α2 + 1)(k2y2 + 1)

βky +
√

(k2β2 + 1)(k2α2 + 1)(y2 + 1/k2)



,

In particular when y = 0 we obtain

B :




α

0

1
k

√
(k2α2 + 1)



7→




α

β
√

(k2α2 + 1)

√
(k2β2 + 1)(k2α2 + 1)



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In other words,

A ◦B :




0

0

1/k



7→




α

β
√
k2α2 + 1

√
(k2β2 + 1)(k2β2 + 1)




The critical factor is this: the origin (0, 0) is moved by the isometryA to the
point (α, 0). The x-axis is the geodesic connecting the point (0, 0) to the
point (α, 0). The isometry B maps this geodesic segment (i.e. the segment
along the x-axis) to a geodesic segment connecting (0, β) to (α, β

√
k2α2 + 1)

The minimum distances between geodesics is preserved and therefore, the
distance between the y-axis and the point (α, β

√
k2α2 + 1) is the same as

the distance between (0, 0) and (α, 0).
A parametric equation for this curve of constant distance from the y-axis

is given by

σ(t) =




α

t

√
α2 + t2 + 1/k2



.

Two curves of this type symmetric with the y-axis will give a pair of inertial
paths that are equidistant for all t. However, it is convenient to calculations
at the origin of the coordinate system. Since H(−k) is a space form it suffices
to translate the curve σ(t) back to the origin using the isometry A−1. Weshall
construct a curve with speed v at the origin such that the linear acceleration
is zero at the origin. The curve is given by

γ(t) = A−1




α

vt

√
α2 + v2t2 + 1/k2



7→




α
√
k2α2 + 1− α

√
k2α2 + k2v2t2 + 1

vt

−α2k +
√

(k2α2 + 1)(k2(α2 + v2t2) + 1)/k



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and

dγ(t)

dt
=




−αk2v2t/
√
k2(α2 + v2t2) + 1

v

tv2k
√
k2α2 + 1/

√
k2(α2 + v2t2) + 1



.

Finally let η(t) =
√
k2(α2 + v2t2) + 1, then

d2γ(t)

dt2
=

1

η3(t)




−αv2k2η2(t) + αk4v4t2

0

kv2(α2k2 + 1)2



.

Consequently, at t = 0, we obtain η(0) =
√
k2α2 + 1 and

d2γ(0)

dt2
=




−αk2v2/
√
k2α2 + 1

0

kv2
√
α2k2 + 1



.

Therefore, along the hyperbolic plane H(−k) we have

||d
2γ(0)

dt2
|| = αk2v2/

√
k2α2 + 1

On the other hand, the arc-length from the point (0, 0) to the point (α, 0)
can be obtained using the arc-length integral along the path

r(t) = (t, 0,
√
t2 + 1/k2).

Note that
dr(t)

dt
= (1, 0, kt/

√
k2t2 + 1),

such that

||dr(t)
dt
||2 = 1− k2t2

k2t2 + 1
=

1

k2t2 + 1

which yields the integral

s =
∫ α

0

dt√
1 + k2t2
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with solution

s =
1

k
ln(
√
k2α2 + 1 + kα)

or

α =
1

k
sinh(sk).

This leads to the following result,

||d
2γ(0)

dt2
|| = sinh(sk)√

sinh2(sk) + 1
= kv2 sinh(ks)

cosh(ks)
.

Therefore, if we let s = d/2, and take into acount the mass, then the coupling
force is

Fc = −2mv2k sinh(kd/2)

cosh(kd/2)
= −2mv2k tanh(kd/2).

As before, we have
Fc ≈ −2Wk2d = 2WKd,

where W is the kinetic energy and where d is sufficiently small.

4. Conclusion

We note that the coupling force in each case is related to the kinetic energy
and is nearly a linear function of the distance for small distances. From a
relativistic point of view, we can see that while the velocity is bounded,
the kinetic energy is not. Thus as the kinetic energy increases so does the
coupling force. In the case of a negatively curved manifold, the coupling
force necessary to keep the particles together must be applied inward, but if
the kinectic energy is large enough and the curvature is, say increasing, then
the typical chemical binding forces between particles may be broken.

The case of positive curvature is more problematic. While the curvature
of the manifold tends to push the particles together, it is clear that in three
dimensions this force will be somewhat unstable and probably cause the
coupled system to spin. In any case, large forces acting on coupled particles
in curved spaces may cause significant instability in the usual chemical bonds.
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