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Interpretation of the French Wechsler Intelligence Scale for Children–Fifth Edition (French WISC–V;
Wechsler, 2016a) is based on a 5-factor model including Verbal Comprehension (VC), Visual Spatial
(VS), Fluid Reasoning (FR), Working Memory (WM), and Processing Speed (PS). Evidence for the
French WISC–V factorial structure was established exclusively through confirmatory factor analyses
(CFAs). However, as recommended by Carroll (1995); Reise (2012), and Brown (2015), factorial
structure should derive from both exploratory factor analysis (EFA) and CFA. The first goal of this study
was to examine the factorial structure of the French WISC–V using EFA. The 15 French WISC–V
primary and secondary subtest scaled scores intercorrelation matrix was used and factor extraction
criteria suggested from 1 to 4 factors. To disentangle the contribution of first- and second-order factors,
the Schmid and Leiman (1957) orthogonalization transformation (SLT) was applied. Overall, no EFA
evidence for 5 factors was found. Results indicated that the g factor accounted for about 67% of the
common variance and that the contributions of the first-order factors were weak (3.6 to 11.9%). CFA was
used to test numerous alternative models. Results indicated that bifactor models produced better fit to
these data than higher-order models. Consistent with previous studies, findings suggested dominance of
the general intelligence factor and that users should thus emphasize the Full Scale IQ (FSIQ) when
interpreting the French WISC–V.

Public Significance Statement
The present study indicated that the factorial structure of the French Wechsler Intelligence Scale for
Children–Fifth Edition (WISC–V) consists of a general intelligence factor (g factor) and 4 first-order
primary factors. Data were not consistent with the 5-factor model promulgated by the publisher. The
general intelligence factor accounted for the largest portion of common variance, hence supported the
primary interpretation of the FSIQ.

Keywords: WISC–V, exploratory factor analyses, confirmatory factor analysis, ESEM, Schmid-Leiman
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Assessment of cognitive abilities of French-speaking children is
mainly performed using the Wechsler Intelligence Scale for Chil-
dren and the latest version, the French WISC–V (Wechsler, 2016a)
was recently published. While the United States (U.S.) WISC–V is
composed of 16 intelligence subtests, the French WISC–V in-
cludes only 15 subtests. Unlike the U.S. WISC–V, the French
WISC–V includes neither the Picture Concepts subtest nor Com-
plementary Index score (Naming Speed, Symbol Translation, and

Storage and Retrieval) subtests that were added to assess addi-
tional cognitive processes. Seven primary subtests are used to
estimate the FSIQ: Block Design (BD), Similarities (SI), Matrix
Reasoning (MR), Digit Span (DS), Coding (CD), Vocabulary
(VC), and Figure Weights (FW). Three additional primary subtests
(Visual Puzzles [VP], Picture Span [PS], and Symbol Search [SS])
permit estimation of the five first-order primary factor index
scores: VC, VS, FR, WM, and PS. At the secondary level, five
subtests (Information [IN], Letter-Number Sequencing [LNS],
Cancellation [CA], Comprehension [CO], and Arithmetic [AR])
can replace one subtest in the estimation of the FSIQ or be used in
the estimation of five ancillary index scores: Quantitative Reason-
ing (QR), Auditory Working Memory (AWM), Nonverbal (NV),
General Ability (GA), Cognitive Proficiency (CP).

From a theoretical perspective, although the WISC–V attempted
to reflect the current conceptualizations of intellectual measure-
ment, Naglieri (2016, p. 665) argued “there is no unifying theory
upon which the WISC–V was built” (Reynolds, & Keith, 2017).
However, the Cattell-Horn-Carroll (CHC) theory of the cognitive
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ability (McGrew, 2009; Schneider & McGrew, 2012) as well as
neuropsychological theories were provided as theoretical founda-
tions in the French WISC–V Interpretive Manual (Wechsler,
2016b). The main theoretical goal of the WISC–V was to split the
Perceptual Reasoning (PR) factor into two distinct factors, VS and
FR. The FSIQ and the first-order primary factors of the French
WISC–V reflect the higher-order CHC model. The publisher of the
French WISC–V (Pearson France & ECPA) provided evidence of
the factorial structure exclusively through CFAs. Further, their
CFA examined only higher-order models with the final model
consisting of a general intelligence factor (g factor) and five
first-order primary factors. In a higher-order model, there are no
direct loadings or influences of g on the subtest indicators. It is
thus assumed that the general intelligence factor is fully mediated
by the five first-order broad abilities in influencing the subtest
scores and hence g is a superordinate factor (Canivez, 2014;
Gignac, 2008). The first-order factors are components of the global
factor, rather than distinct components. The five-factor higher-
order model preferred by the publisher of the French WISC–V
(Model 5e, Wechsler, 2016b, Figure 5.1 p. 70), is exactly the one
proposed in the United States version (Chen, Zhang, Raiford, Zhu,
& Weiss, 2015; Wechsler, 2014), and includes three cross loadings
of the AR subtest on VC, FR, and WM latent variables, while all
other 14 subtests were associated with only one latent variable.

Like the U.S. WISC–V, several concerns (Canivez & Watkins,
2016; Canivez, Watkins, & Dombrowski, 2016, 2017; Dom-
browski, Canivez, Watkins, & Beaujean, 2015) can also be raised
regarding the French WISC–V factorial structure, and regarding
the CFAs reported in the French WISC–V Interpretive Manual.
The first, and perhaps the most important issue, is that the French
test publisher’s did not report EFAs.1 Evidence of the factorial
structure of the French WISC–V was established exclusively using
CFAs. However, EFA and CFA are not redundant and must be
used in a complementary manner (Brown, 2015; Carroll, 1993,
1995; Gorsuch, 1983; Morin, Arens, & Marsh, 2016). Reise
(2012), for instance, suggested “the necessity to conduct explor-
atory [bifactor] analysis prior to considering confirmatory model-
ing” (p. 677). Concretely, it means that the basic model tested with
CFAs must be the model obtained with EFAs, which determine the
appropriate number of factors and which variables are indicators of
the various latent variables. Ruscio and Roche (2012) indicated
that poor decisions would be made if the number of factors that is
retained is not correct. For instance, Canivez (2008) found that two
factors were sufficient to describe the factorial structure of the
Stanford-Binet Intelligence Scales, Fifth edition (SB5) while Dom-
browski, Watkins, and Brogan (2009) concluded that only one
factor was sufficient for the Reynolds Intellectual Assessment
Scales (RIAS). These findings were consistent with Frazier and
Youngstrom’s (2007) conclusion that intelligence batteries were
frequently “overfactored.” Most importantly, these studies indi-
cated that the general factor accounted for most of the total and the
common variance as has also been found in other studies (Canivez
& Watkins, 2010; Watkins, 2006; Watkins, Wilson, Kotz, Car-
bone, & Babula, 2006), and hence clinical interpretations that
focus on first-order factors should be done with caution (Canivez,
2008; Golay & Lecerf, 2011).

Regarding the French WISC–V, this is particularly important
because the new French WISC–V deviates from the French
WISC–IV (Wechsler, 2005): three new subtests were introduced

(FW, VP, PS) and two subtests were removed (PC, WR). The
French WISC–V also differs from the U.S. WISC–V by not
including the Picture Concepts subtest. Therefore, because the
factors and the factorial structure depend on the subtests included
within CFA, the basic factorial structure of the French WISC–V
should not derive directly from the factorial structure of the French
WISC–IV nor directly from the U.S. WISC–V.

Although CFA has largely replaced EFA, CFA has some dis-
advantages. For instance, fixing some cross loadings to zero might
specify a too parsimonious model and poor model fit. Therefore, to
avoid some limitations of EFA and CFA, Asparouhov and Muthén
(2009) developed the exploratory structural equation modeling
(ESEM) to assess the construct-relevant multidimensionality in
measurement instruments. This method integrates EFA within the
structural equation modeling (SEM) framework and provides fit
statistics (Morin, Arens, et al., 2016, Morin, Arens, Tran, & Caci,
2016). Bifactor ESEM was developed to allow the estimation of
one general factor (G) and specific group factors (S). The general
factor reflects the variance that is shared across all indicators,
while S factors reflect the residual covariance not explained by the
general factor. While bifactor models would be more adequate for
hierarchically organized constructs, bifactor ESEM would be more
appropriate for conceptually adjacent construct. Although Morin,
Arens, et al. (2016) suggested that bifactor ESEM could be useful
with multidimensional measures, and particularly when hierarchi-
cally superior constructs are included, the present study examined
EFA and CFA similar to that conducted in published studies of the
WISC–V (Canivez et al., 2016, 2017). Nevertheless, bifactor
ESEM results were also examined and briefly presented.

There are six additional issues that concern the test publisher’s
CFA. First, the publisher of the French WISC–V inexplicably used
weighted least squares (WLS) estimation without specific justifi-
cation as was done with the United States version (Canivez et al.,
2016, 2017). The “use of an estimation method other than ML
[maximum likelihood] requires explicit justification” (Kline, 2011,
p. 154), because estimation method can substantially affect param-
eter estimation, but no such explanation was provided. Assuming
that the standardization sample data were normally distributed and
subtest indicators were on an interval scale of measurement, then
maximum lilelihood (ML) estimation should probably have been
used because it provides the most precise variance estimates
(Kline, 2016; Ullman, & Bentler, 2013). Second, as suggested by
Beaujean (2016), it is not known how the publisher set the scales
for the latent variables (i.e., fixing a loading, fixing latent variable
variance, or effects coding). Because df are very important in
computing statistical indices and understanding results, it is nec-
essary to know which parameters were fixed and which were
freely estimated. Third, the publisher selected the best fitting
model based solely on the �2 difference for all models with four
and five first-order factors (Wechsler, 2016b, Table 5.3, p. 69).
However, according to Cheung and Rensvold (2002) and Chen
(2007), �CFI � .01 and �RMSEA � .015 indicate meaningful
differences between models. Nor did the publisher use Akaike’s
information criterion (AIC) as suggested by Kline (2016). The use
of the �CFI, for instance, could allow avoiding the confusion

1 Similarly, no EFAs were reported in the U.S. WISC–V technical
manual.
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between statistical significance and practical significance (Kline,
2016, p. 465).

Fourth, under the CFA framework and SEM, an important step
is to determine whether the model is consistent with the data. Most
frequently, this evaluative step focused on global or model-fit
statistics (Byrne, 2001). However, as recommended by Kline
(2016, p. 461–462), a model should never be retained “solely on
global fit testing,” local fit assessment should always be con-
ducted. Regarding the favored French WISC–V measurement
model (labeled 5e in the French WISC–V Interpretive Manual),
local fit assessment revealed two main problems: (a) the measure-
ment model included a standardized path coefficient of VC on AR
(.02) that was not only not statistically significant, but also not
meaningful; and (b) the standardized loading between g and Fluid
intelligence (Gf) was 1.00, a finding consistent with previous
studies (Weiss, Keith, Zhu, & Chen, 2013), that suggests that the
French WISC–V may be overfactored, or a result of statistical
artifact. Indeed, Bayesian structural equation modeling with the
French WISC–IV suggested that the correlation between g and Gf
was not 1.00, but around .88 (Golay, Reverte, Rossier, Favez, &
Lecerf, 2013). Inappropriate zero cross loadings could account for
the unitary loading between g and Gf, because the correlations
between first-order factors can be overestimated when using stan-
dard CFA estimators (Asparouhov, & Muthén, 2009; Marsh et al.,
2010; Morin, Arens, Tran, & Caci, 2016). Other authors have
suggested that with classical ML-CFA, statistical power could
explain why it may not always be possible to distinguish FR from
the general factor (Matzke, Dolan, & Molenaar, 2010). Thus, the
equivalence of g and Gf in higher-order models may be better
accounted for by statistical artifacts than the mere equivalence of
the two constructs. Nevertheless, this perfect correlation between g
and Gf constitutes a problem and may pose a threat to discriminant
validity of test scores interpretation and use. Taken together, local
fit assessment of the publisher preferred model (Model 5e) sug-
gested it was not adequate.

Fifth, the publisher did not examine rival bifactor models (Hol-
zinger & Swineford, 1937); only higher-order measurement mod-
els were reported in the French WISC–V Interpretive Manual.
However, higher-order and bifactor models are commonly used to
fit multidimensional data (Canivez, 2016; Canivez, Watkins, &
Dombrowski, 2017; Carroll, 1993; Gignac, 2016; Mansolf, &
Reise, 2017; Reise, 2012). While higher-order and bifactor models
are very similar, and are nested models (Mansolf & Reise, 2017),
they underlie distinctly different theories of the structure of cog-
nitive abilities. The higher-order model is a hierarchical structure,
while the bifactor model is nonhierarchical, because in this latter
model, all subtest scores load directly onto a general factor and
also onto one (or more) of the first-order group factors. The g
factor has no effect on the first-order group factors, which are
modeled orthogonally to each other (i.e., uncorrelated first-order
factors) and to the g factor. In contrast, in the higher-order model,
the g factor is indirectly related to subtest scores, and explains the
correlations between first-order factors. Consequently, while the g
factor is conceptualized as a superordinate factor in higher-order
models, it is conceptualized as a breadth factor in bifactor models
(Gignac, 2008).

The omission of bifactor model examination is especially as-
tonishing because some authors regularly prefer them to higher-
order models. One reason bifactor models are preferred over the

higher-order model is that they are more in line with Carroll’s
three-stratum model, which is considered as foundational to the
WISC–V. Indeed, like Spearman (1927); Carroll (1993) favored
the bifactor model. A second reason is that bifactor models allow
for a better partitioning of general and group factor variances. The
bifactor model permits easy identification of the relative impor-
tance of the first-order group factors and the general factor on each
test score, and also permits the estimation of omega-hierarchical
(�H) and omega-hierarchical subscale (�HS). These coefficients
are model-based coefficients that represent the proportion of vari-
ance in a unit-weighted composite score that is attributable to a
factor. The �H estimates the proportion of variance explained by the
general factor independent of group factors, while the �HS estimates
the proportion of variance uniquely explained by the group factors
with effects of the general and other group factors removed (Zinbarg,
Revelle, Yovel, & Li, 2005). For instance, if a test battery has an �H

of .80, this means that the unit-weighted score for g based on its
indicators accounts for 80% true score variance. Thus, omega coef-
ficients permit the determination of the importance of the general
factor and group factors in the interpretation of composite and subtest
scores. In contrast, one substantial limitation of higher-order models is
that the first-order (broad abilities) influence on subtest scores is
confounded with g’s influence. The lack of distinction between g’s
direct influence on subtests scores may lead to overestimation of the
broad abilities’ influence.

From a theoretical perspective, although bifactor and higher-
order models are very similar, choices between a bifactor model or
a higher-order model are necessary, because they imply different
theoretical conceptions of the general factor for instance (i.e.,
breadth vs. superordinate). Several studies have indicated that
bifactor models provided better fit to the Wechsler Intelligence
Scales than higher-order models (Beaujean, Parkin, & Parker,
2014; Canivez et al., 2016, 2017; Gignac, 2016; Golay & Lecerf,
2011). Consequently, some studies were conducted to determine
whether the bifactor model represents really a more adequate
description of cognitive abilities than higher-order model. Murray
and Johnson (2013), on the basis of simulation studies, found that
standard indices of goodness of fit (AIC, Tucker-Lewis index
[TLI], and Bayesian information criterion [BIC]) were biased in
favor of the bifactor model, because the data involve unmodeled
complexity. Murray and Johnson suggested that although the bi-
factor model fits better, it does not necessarily indicate that it is a
better description of ability structure. They suggested that the
choice between bifactor and higher-order models should not solely
depend on model fit. Morgan, Hodge, Wells, and Watkins (2015)
also conducted Monte Carlo simulations to address this issue. They
found that when the simulated data were consistent with the
bifactor model, the fit indexes (root-mean-square error of approx-
imation [RMSEA], TLI, etc.) favored the bifactor model. In con-
trast, when the simulated data were consistent with a higher-order
model, the fit indexes favored several times incorrectly the bifactor
model. In sum, Murray and Johnson (2013) and Morgan et al.
(2015) demonstrated that bifactor model may provide better fit,
because fit indices are biased.

Gignac (2016) suggested that the source of the bias in favor of
the bifactor model is the proportionality constraint imposed in a
higher-order model. This constraint means that with the higher-
order model, the general factor loading and the specific factor
loadings ratio (g/s) are constrained to be equal across all indicators
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within a group factor. The bifactor model does not impose this
constraint. Gignac (2016) assumed that the bifactor model fits data
better than the higher-order model when data are inconsistent with
the proportionality constraint (Molenaar, 2016). This hypothesis
implies that comparisons between higher-order and bifactor mod-
els should be based on indices that take into account the penalty for
model complexity (TLI, AIC, and BIC).

However, Mansolf and Reise (2017) disagreed with Gignac’s
(2016) proportionality interpretation. They distinguished higher-
order and bifactor models in terms of tetrad constraints. They
suggested that while all models impose rank constraints, unique
tetrad constraints are imposed in a higher-order model, but not in
a bifactor one. When tetrad constraints are violated, goodness-of-
fit statistics are biased in favor of the bifactor model. This tetrad
constraint hypothesis could explain the results of Murray and
Johnson (2013) and Gignac (2016). Following this hypothesis,
Yang, Spirtes, Scheines, Reise, and Mansoff (2017) were able to
reduce the statistical bias in favor of the bifactor model, by
developing an algorithm for purifying or removing impure indica-
tors. From an empirical point of view, it is important to note that
a recent study indicated that the fit statistics were not systemati-
cally biased in favor of the bifactor model. In a study conducted
with the WISC–IVU.K. (U.K. WISC–IV edition) with referred Irish
children, meaningful difference between higher-order and bifactor
models were not observed (Canivez, Watkins, Good, James, &
James, 2017). These findings suggested that the decisions to adopt
a higher-order or a bifactor model should rely on theory and on the
conceptualization of g, not solely on fit indices.

Given the above concerns, independent examination of the
structural validity of the French WISC–V was necessary to assess
its construct validity. The present study addressed three goals. The
first goal was to estimate the number of factors in the French
WISC–V using best practices in EFA (Velicer, Eaton, & Fava,
2000). Incorrect specification of the correct number of factors can
lead to poor score pattern reproduction and interpretation. Based
on Canivez et al. (2016) findings with the U.S. WISC–V, it was
hypothesized that the factor structure of the French WISC–V
would be better described with four factors. By conducting EFA,
the second goal was to ascertain the exact nature of the constructs
assessed by each subtest score by estimating the relationship
between every latent variable and subtest score. By applying the
SLT (Schmid and Leiman, 1957), the present study also allowed
the determination of the proportion of variance explained by the
general factor and the proportion of variance explained by the
group factors (Gignac, 2007). Based on previous studies, it was
assumed that the g factor would explain the largest portions of total
and common variance. Following the SLT procedure, the third and
final goal was to test the competing theories of superordinate
general intelligence versus breadth general intelligence. Using
CFA, bifactor models were tested and compared with higher-order
models, but unlike publisher reported analyses the present study
used ML estimation in CFA.

Method

Participants

French WISC–V standardization sample raw data were re-
quested from the publisher but access to this data set to conduct

these independent analyses was denied. Absent raw data, the
summary statistics (correlations and descriptive statistics) in the
French WISC–V Interpretive Manual (Wechsler, 2016b, Table
5.1, p. 62) were used to conduct EFA and CFA. The French
WISC–V standardization sample (ages 6:0 through 16:11 years) is
described in the French WISC–V Interpretive Manual and in-
cluded 1,049 participants. The sample was stratified according to
age, sex, parental education level (with 6 levels), and geographic
region (with 5 regions); and detailed demographic characteristics
are reported. The total sample was representative of the French
population, according to the general census of the population made
by the Institut National de la Statistique et des Etudes
Economiques (INSEE) in 2010, and was divided in 11 age groups
(6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16). Each group was
composed of 80 to 104 participants. Standardized scores were
computed for each age group separately (M � 10; SD � 3).
Because no data were directly collected in this study, no ethics
committee approval was received.

Instrument

The French WISC–V is an individually administered intelli-
gence test for children (6 to 16:11 years old). The French WISC–V
FSIQ is based on the sum of seven primary subtests: BD, SI, VC,
MR, FW, DS, and CD. The primary index scale level is composed
of the 10 primary subtests, which are used for the estimation of the
five index scores: VC, VS, FR, WM, and PS. In addition to the
seven primary subtests used for the FSIQ, VP, PS, and SS are
added for the estimation of the five primary indices. The FSIQ and
the five indices are based on a mean of 100 and standard deviation
of 15. Five ancillary index scores may be computed: QR, AWM,
NV, GA, and CP.

Procedure and Analyses

EFAs were conducted using the intercorrelation matrix for the
15 primary and secondary subtests reported in Table 5.1 in the
French WISC–V Interpretive Manual (Wechsler, 2016b, p. 62).
The published matrix includes correlations rounded to only two
decimals, but Carroll (1993) noted, “Little precision is lost by
using two-decimal values” (p. 82). CFAs were conducted with
covariance matrices reproduced from the correlation matrix and
subtest standard deviations published in Table 5.1 in the Interpre-
tive Manual (Wechsler, 2016b, p. 62).

Several criteria were examined to determine the number of
factors to retain and included eigenvalue �1 (Kaiser, 1960), the
scree test (Cattell, 1966), standard error of scree (SEscree; Zoski &
Jurs, 1996), parallel analysis (PA; Horn, 1965), minimum average
partials (MAP; Frazier & Youngstrom, 2007; Velicer, 1976), the
BIC (Schwarz, 1978), and the sample size adjusted BIC (SSBIC;
Sclove, 1987). Criteria were estimated with SPSS 24 for Macin-
tosh or with specific software. The SEscree was used as pro-
grammed by Watkins (2007), while random eigenvalues for PA
were produced by Monte Carlo PCA for Parallel Analysis software
(Watkins, 2000) with 100 iterations to provide stable estimates.
According to Glorfeld (1995), a modified PA was used to reduce
the tendency to PA to overextract, and hence the eigenvalue at the
95th percentile was used as estimated by the CIeigenvalue pro-
gram (Watkins, 2011). Most frequently, PA suggests retaining too
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few factors particularly in the presence of a strong general factor
(Crawford et al., 2010).

Principal axis EFAs were conducted to analyze the factorial
structure of the French WISC–V using SPSS 24 for Macintosh.2

Retained factors were subjected to promax rotation (k � 4; Gor-
such, 1983). For a factor to be considered viable at least two
subtests required salient loadings (�.30; Child, 2006). Then, to
disentangle the contribution of first and second order factors, the
SLT was applied. This procedure has been extensively used and
advocated by Carroll (1993). The SLT has been used in numerous
studies with the WISC–IV (Watkins, 2006), the RIAS (Dom-
browski et al., 2009), the WISC–V (Canivez et al., 2016), the
Wechsler Abbreviated Scale of Intelligence (WASI) and the Wide
Range Intelligence Test (WRIT; Canivez, Konold, Collins, &
Wilson, 2009), the SB5 (Canivez, 2008), the French Wechsler
Adult Intelligence Scale—Third Edition (Golay & Lecerf, 2011),
and the French WISC–IV (Lecerf et al., 2011). The SLT allows for
deriving a hierarchical factor model from higher-order models and
decomposes the variance of each subtest score into the general
factor first and then the first-order factor. The first-order factors
are modeled orthogonally to each other and to the general factor
(Gignac, 2006; Gorsuch, 1983). The SLT approximates the bifac-
tor model and was produced using the MacOrtho program (Wat-
kins, 2004). This procedure permits disentangling the common
variance explained by the general factor and the residual common
variance explained by the first-order factors.

The �H and �HS (Reise, 2012; Reise, Bonifay, & Haviland,
2013) were estimated and several authors have suggested that
these coefficients are more adequate than the alpha coefficient for
test scores reliability assessment (Brunner, Nagy, & Wilhelm,
2012; Gignac & Watkins, 2013). �H estimates the reliability of the
hierarchical general intelligence factor independently of the vari-
ance of group factors. �HS estimates the reliability of group factors
with general intelligence and other group factor variance removed.
Omega estimates were obtained with the Omega program devel-
oped by Watkins (2013). According to Reise et al. (2013), Omega
coefficients should be, at minimum, higher than .50, but .75 is
better.

Finally, complementary CFAs were conducted with R-package
“Lavaan” (version 05–22 with the option “mimic � MPLUS”) in
Rstudio for Macintosh version 1.0.136 (R Development Core
Team, 2015). All higher-order models reported in the French
WISC–V Interpretive Manual were examined with ML estimation
and alternative bifactor models of all higher-order models were
also tested. Multiple indicators of approximate fit were considered
to assess competing models (Hu & Bentler, 1999). The chi-square
(�2) statistic, the RMSEA, and the standardized-root-mean square
residuals (SRMR), which expresses the degree of fit between the
covariance matrix of the observed data and the covariance matrix
predicted by the model, were used as primary fit indices (Byrne,
2001). The TLI, which is relatively unrelated to sample size, and
the comparative fit index (CFI) were also used to evaluate model
fit. Contemporary criteria for evaluating fit were applied with
values of �.95 for CFI and TLI, and �.06 for RMSEA and �.08
for SRMR representing good model fit (Hu & Bentler, 1999). The
AIC and the BIC were also used to compare models: the smaller
AIC suggests the better model most likely to replicate (Kline,
2016). In the French WISC–V Interpretive Manual, ��2 was the
sole criterion used to compare models. However, because it has

been demonstrated that ��2 is sensitive to large sample size, the
�CFI and �RMSEA were also examined. For a model to be
considered superior, it had to exhibit adequate to good overall
fit and display meaningfully better fit (�CFI � .01 and
�RMSEA � .015) than alternative models (Chen, 2007;
Cheung & Rensvold, 2002). AIC and BIC were also reported in
the French WISC–V Interpretive Manual, but not used for
model comparisons.

Results

EFAs

Examination of multiple criteria to determine the number of
factors to retain (Ruscio & Roche, 2012; Velicer et al., 2000)
found MAP to suggest one factor, visual scree and Horn’s parallel
analysis (HPA) suggested two factors, eigenvalue �1 and SEscree

suggested three factors, BIC and SSBIC suggested four factors,
and the publisher (theory) proposed structure promoted five fac-
tors. Although none of the objective extraction criteria suggested
more than four factors, EFA began with the extraction of five
factors based on the suggested factorial structure proposed by the
publisher of the French WISC–V. Extraction of five factors was
also examined because it is better to overextract than underextract
to examine performance of smaller factors. As stated by Wood,
Tataryn, & Gorsuch, (1996, p. 354), “avoid underextraction, even
at the risk of overextraction.” Subsequently, models with four,
three, and two factors were sequentially examined.

Results of EFA with five extracted factors and promax rotation
(k � 4) are provided in supplementary Table S1. Data indicated
that the fifth factor included only one salient pattern loading (AR),
which does not satisfy the basic requirement that each factor
should be marked by at least two salient factor pattern coefficients.
SI, VC, IN, and CO loaded on a VC factor; BD, VP, MR, and FW
loaded on a PR factor; CD, SS, and CA loaded on a PS factor; and
DS, LNS, and PS loaded on a WM factor. Separate VS and FR
factors did not emerge when forcing extraction of five factors.

Table 1 presents the results of extraction of four factors with
promax rotation (k � 4). In this model, SI, VC, IN, and CO loaded
on a VC factor; BD, VP, MR, and FW loaded on a PR factor (AR
also had a secondary cross-loading [.302] on this factor); CD, SS,
and CA loaded on a PS factor; and DS, LNS, and AR loaded on a
WM factor. Given standard error, the PS subtest could be consid-
ered having achieved a salient factor pattern coefficient on the
WM factor (.291). The g loadings ranged from .327 (CA) to .724
(SI) and all were within the fair to good range (except CD, SS, and
CA) based on Kaufman’s (1994) criteria (�.70 � good, .50–.69 �
fair, �.50 � poor).

Results of EFA with three-factors and two-factors with promax
rotation (k � 4) are provided in supplementary Table S2. Results
of three-factor extraction found the PR and the WM factors
merged, while VC and PS factors were still distinct. In the two-
factor extraction, VC, PR, and WM factors merged and a separate
PS factor emerged. These models display a fusion of theoretically
meaningful constructs that is a likely result of underextraction,

2 Although not reported here, analyses were also conducted with
R-package (“psych” version 1.6.9), and results were similar.
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thereby producing unsatisfactory representations (Gorsuch, 1983;
Wood et al., 1996).

Hierarchical EFA: Four French WISC–V Factors
SLT Bifactor

Based on the present EFA results, the four-factor EFA was the
most reasonable fit to theory and psychometric standards and was
subjected to higher-order EFA and the SLT procedure.Table 2
presents results from SLT of the four extracted factors. Results
indicated that all subtests were consistently associated with their
theoretically proposed factor, except PS and AR. AR had relatively
similar residual group factor loadings on WM (.170) and on PR
(.151). PS had relatively similar residual group factor loadings on
PS (.144), WM (.132), and PR (.113).

The g factor accounted for 35.7% of the total variance and
67.0% of the common variance. This finding is consistent with the
presence of a general intelligence factor. Regarding subtests, the g
factor accounted for between 8.4% (CA) and 50.3% (LNS) of
individual subtest variability. According to Kaufman’s (1994)
criteria, only the LNS subtest had a “good” g loading (�.70). This
LNS loading is relatively close to the one reported by Canivez et
al. (2016) with the U.S WISC–V (.69). However, in the U.S.
WISC–V, the higher g loading was for VC (.774).

At the group factor level, smaller portions of additional common
variance were provided by VC (10.2%), PR (6.8%), WM (4.2%),
and PS (11.9%). The combination of the general factor and group
factors measured 53.3% of the common variance; hence, 46.7% of

the French WISC–V variance is unique (a combination of specific
and error variance). CA and PS were heavily influenced by unique
variance (76.2% and 62.9%, respectively). The �H and �HS coef-
ficients were estimated from the SLT results. The �H coefficient
for the general factor was high (.831). The �HS coefficients for the
four group factors were lower and ranged from .108 (WM) to .468
(PS). Thus, the four French WISC–V group factors suggested by
EFA would produce unit-weighted composites that likely possess
too little unique true score variance for confident clinical interpre-
tation (Reise, 2012; Reise et al., 2013).

For comparison purposes, bifactor ESEM analyses were conducted
with Mplus 7.4 (with ML estimation and bigeomin rotation, orthog-
onal rotation; Muthén & Muthén). Model comparisons indicated that
the best model included a general factor and three group factors
(CFI � .992, TLI � .984): VC (SI [.415], VO [.576], IN [.365], CO
[.438]); PS (CD [.591], SS [.631], CA [.388], PS [.127]); and VS/WM
(BD [.262], VP [.321], MR [.126], DS [�.316], LNS [�.337]). CO
and BD also loaded weakly on PS (.092 and .081, respectively).
French WISC–V g loadings varied from .294 (CA) to .76 (VP). These
findings are not consistent with the favored model reported in the
French WISC–V Interpretive Manual. It is important to note that
ESEM with an oblique rotation revealed a similar model with a
general factor and 3 group factors: VC, PS, and WM/VS.

CFAs

CFAs were conducted to replicate and extend the data analyses
reported in the French WISC–V Interpretive Manual (Wechsler,

Table 1
French Wechsler Intelligence Scale for Children—Fifth Edition (French WISC–V) Four Oblique Factor Solution for the Total
Standardization Sample

French
WISC–V
subtest General

F1: Verbal
Comprehension

F2: Perceptual
Reasoning

F3: Processing
Speed

F4: Working
Memory h2

SI .724 .672 (.481) .135 (.609) �.065 (.304) .058 (.616) .623
VC .666 .918 (.809) �.054 (.503) �.034 (.271) �.080 (.531) .664
IN .716 .611 (.749) .149 (.607) .005 (.350) .045 (.604) .577
CO .621 .707 (.698) �.091 (.463) .120 (.364) .008(.513) .499
BD .652 �.013 (.478) .733 (.719) .121 (.444) �.088 (.514) .530
VP .719 �.058 (.521) .922 (.825) .015 (.416) �.086 (.573) .687
MR .683 .087 (.557) .589 (.710) �.057 (.337) .120 (.598) .519
FW .628 .130 (.534) .462 (.632) �.090 (.281) .167 (.565) .431
AR .708 .089 (.583) .302 (.661) .031 (.407) .374 (.682) .520
DS .686 �.036 (.553) .035 (.588) �.074 (.336) .818 (.781) .615
PS .592 .021 (.458) .225 (.546) .173 (.440) .291 (.561) .372
LNS .716 .038 (.591) �.084 (.579) .055 (.430) .809 (.801) .646
CD .446 .055 (.307) �.057 (.344) .698 (.697) .012 (.356) .488
SS .491 �.014 (.314) .015 (.401) .758 (.768) .015 (.393) .589
CA .327 �.024 (.203) .106 (.291) .467 (.488) �.047 (.247) .242

Eigenvalue 6.49 1.46 1.02 .80

Factor correlations F1: VC F2: PR F3: PS F4: WM
Verbal Comprehension (VC)
Perceptual Reasoning (PR) .690
Processing Speed (PS) .404 .507
Working Memory (WM) .727 .752 .497

Note. N � 1,049. French WISC–V subtests: SI � Similarities; VC � Vocabulary; IN � Information; CO � Comprehension; BD � Block Design; VP �
Visual Puzzles; MR � Matrix Reasoning; FW � Figure Weights; AR � Arithmetic; DS � Digit Span; PS � Picture Span; LNS � Letter-Number
Sequencing; CD � Coding; SS � Symbol Search; CA � Cancellation. Salient pattern coefficients (�.30) presented in bold (structure coefficient). h2 �
Communality. General structure coefficients are based on the first unrotated factor coefficients (g loadings).
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2016b, pp. 67–69). Therefore, the procedure and the models
reported in the French WISC–V Interpretive Manual were used as
“baseline.” CFAs reported in the French WISC–V Interpretive
Manual were conducted using the raw data; however the present
analyses were conducted on the reproduced covariance matrix
derived from the French WISC–V subtest correlation matrix and
descriptive statistics because Pearson France declined the request
to provide raw data for independent analyses. In addition, CFAs in
the present study used ML estimation rather than WLS estimation
used by the publisher. For all higher-order models, the df obtained
in the present study were identical to those reported in the French
WISC–V Interpretive Manual. In addition, the approximate fit
values obtained in the present study were similar to those reported
in the French WISC–V Interpretive Manual (CFI, TLI, RMSEA).
This first step is crucial because it provided evidence that present
results conducted with the correlation matrix instead of the raw
data replicated those reported in the French WISC–V Interpretive
Manual. Table 3 presents fit statistics for higher-order models and
alternative bifactor representations for direct comparison.

Higher-order models. Table 3 illustrates the progressively
improved model fit for models with one through five first-order
factors. Results indicated that approximate fit indices (CFI, TLI,
RMSEA, and SRMR) were relatively similar for all higher-order
models, except for models with one, two, and three group factors.
Models 1, 2, and 3 were inadequate based on CFI and TLI (�.95)
and RMSEA (�.06). This finding indicated that the structure
suggested by HPA (2 factors) or MAP (1 factor) did not fit these
data. For higher-order models with 4 and 5 first-order factors,
RMSEA ranged from .052 to .058 and SRMR ranged from .033 to

.034. Overall, fit statistics for all higher-order models with 4 or 5
group factors fit these data well, but numerous problems were
observed in many models with nonsignificant standardized paths,
factors with negative variance, and standardized paths �1.0 (local
assessment, see Table 3). Thus, local fit assessment indicated that
Models 4a, 4c, and 5a should be retained. �CFI and �TLI indi-
cated that there were no meaningful differences (�CFI � .01 and
�TLI � .010), between the four-factor higher-order models and
the five-factor higher-order models. The AIC was slightly lower
for Model 5c with five first-order factors. In the French WISC–V
Interpretive Manual, the AIC was also lower for the Model 5c. In
this model, all loadings were statistically significant. SI, VC, IN,
and CO loaded on VC; BD and VP loaded on VS; MR, FW, and
AR loaded on FR; DS, LNS, PS, and AR loaded on WM; and CD,
SS, and CA loaded on PS. There is only one cross-loading for AR
(WM and FR). However, FR variance was negative in this model
and the AR loading on WM was weak (.22), although statistically
significant. Likewise, Model 4c corresponded to the results from
the present EFA and was psychometrically appropriate. In this
model, all loadings were statistically significant. SI, VC, IN, and
CO loaded on VC; BD, VP, MR, FW, and AR loaded on PR; DS,
LNS, PS, and AR loaded on WM; and CD, SS, and CA loaded on
PS. There is only one cross-loading for AR (WM and PR). Finally,
examination of Model 5e, the favored model in the French
WISC–V Interpretive Manual, indicated that the Arithmetic load-
ing with VC was not statistically significant (.025). Hence, Model
5e was not the best model for the French WISC–V.

Bifactor models. Bifactor models examined in the present
study included all subtests loading directly onto a general factor

Table 2
Sources of Variance in the French Wechsler Intelligence Scale for Children—Fifth Edition (French WISC–V) for the Total
Standardization Sample According to the Schmid-Leiman Bifactor Model (Orthogonalized Higher-Order Factor Model) With Four
First-Order Factors

General
F1: Verbal

Comprehension
F2: Perceptual

Reasoning
F3: Processing

Speed
F4: Working

Memory

French WISC–V subtest b S2 b S2 b S2 b S2 b S2 h2 u2

Similarities .666 .444 .409 .167 .068 .005 �.054 .003 .026 .001 .619 .381
Vocabulary .592 .350 .558 .311 �.027 .001 �.028 .001 �.036 .001 .665 .335
Information .657 .432 .371 .138 .075 .006 .004 .000 .020 .000 .575 .425
Comprehension .556 .309 .430 .185 �.046 .002 .100 .010 .004 .000 .506 .494
Block Design .613 .376 �.008 .000 .367 .135 .101 .010 �.040 .002 .522 .478
Visual Puzzles .684 .468 �.035 .001 .461 .213 .012 .000 �.039 .002 .683 .317
Matrix Reasoning .655 .429 .053 .003 .295 .087 �.047 .002 .054 .003 .524 .476
Figure Weights .602 .362 .079 .006 .231 .053 �.075 .006 .076 .006 .433 .567
Arithmetic .683 .466 .054 .003 .151 .023 .026 .001 .170 .029 .522 .478
Digit Span .690 .476 �.022 .000 .018 .000 �.062 .004 .371 .138 .618 .382
Picture Span .566 .320 .013 .000 .113 .013 .144 .021 .132 .017 .371 .629
Letter-Number Sequencing .709 .503 .023 .001 �.042 .002 .046 .002 .367 .135 .642 .358
Coding .391 .153 .033 .001 �.029 .001 .582 .339 .005 .000 .494 .506
Symbol Search .434 .188 �.009 .000 .008 .000 .632 .399 .007 .000 .588 .412
Cancellation .289 .084 �.015 .000 .053 .003 .389 .151 �.021 .000 .238 .762
Total variance .357 .054 .036 .063 .022 .533 .467
Explained common variance .670 .102 .068 .119 .042
Picture Span on WM �H � .831 �HS � .287 �HS � .179 �HS � .468 �HS � .108
Picture Span on PS �H � .833 �HS � .186 �HS � .178 �HS � .374 �HS � .220

Note. N � 1,049. WM � Working Memory; PS � Processing Speed; b � loading of subtest on factor; S2 � variance explained; h2 � communality; u2 �
uniqueness; �H � omega-hierarchical; �HS � omega-hierarchical subscale. Bold type indicates coefficients and variance estimates consistent with the
theoretically proposed factor. Italic type indicates coefficients and variance estimates associated with an alternate factor (where residual cross-loading b was
larger than for the theoretically assigned factor).
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and also onto one group factor. All bifactor models demonstrated
good fit to these data (see Table 3) according to RMSEA, SRMR,
TLI, and CFI (except TLI for bifactor Model 2). For models with
four and five factors, CFI ranged from .974 (Model 5b) to .980
(Models 4c and 4d); TLI ranged from .964 (Model 5b) to .972
(Model 4c); RMSEA ranged from .041 (Model 4c) to .046 (Model
5b); and SRMR ranged from .027 to .029; thus, there were no
meaningful differences between these models (�RMSEA, �CFI
and �TLI; Chen, 2007; Cheung & Rensvold, 2002). According to
AIC, the best model is the bifactor Model 4c (Figure 1), which
corresponds to the result of the present EFA with SI, VC, IN, and
CO loading on VC; BD, VP, MR, AR, and FW loading on PR; AR,
DS, PS, and LNS loading on WM; and CD, SS, and CA loading on
PS. In bifactor Model 4c, the PS loading on WM was not statis-
tically significant and AR loadings on WM and on PR were weak.
The loadings of MR and FW on PR were also weak (.206 and .130,
respectively). However, it is important to note that in contrast with
higher-order models, nonsignificant paths are not so dramatic with
the bifactor model, because it indicates that the variance of the

subtest score was explained by the general factor rather than by the
first-order factors. The modification of Model 4c with reestimation
of parameters after dropping the nonsignificant PS to WM path is
provided in supplementary Figure S3.

Overall, this finding was consistent with SLT, because subtests
loadings on the first-order factors were lower than subtest loadings
on the general factor, except for CD, SS, and CA. For instance, in
the bifactor Model 4c (supplemental material Figure S3), the g
loadings for LNS (.703), AR (.701), SI (.686), IN (.684), DS
(.679), MR (.678), and VP (.671) were very high. This result
suggested that these subtests scores were primarily measures of the
g factor. Conversely, CD (.396), SS (.437), and CA (.299) showed
less salient direct loadings from g.

The second best bifactor model was Model 4a, which had a very
close AIC estimate to Model 4c (�AIC � 4.03) and is illustrated
in Figure 2. This model offers the advantage of simple structure
and subtest alignment that matches earlier theoretical postulation.
Given the lack of meaningful difference between Model 4a and
Model 4c an argument could be made that this should be the

Table 3
CFA Fit Statistics for French WISC–V 15 Subtests for the Total Standardization Sample

Models �2 df AIC BIC RMSEA
90% CI
RMSEA SRMR TLI CFI

Higher-order models
Model 1 (1 factor 	 g) 1136.59 90 72,942.18 73,165.19 .105 [.100, .111] .063 .817 .843
Model 2 (2 factors 	 g) 915.18 86 72,728.77 72,971.60 .096 [.089, .100] .058 .848 .876
Model 3 (3 factors 	 g) 598.30 84 72,415.89 72,668.63 .076 [.069, .081] .043 .904 .923
Model 4a (4 factors 	 g) 334.19 82 72,155.78 72,418.43 .054 [.048, .060] .034 .952 .962
Model 4b (4 factors 	 g)a 368.82 82 72,190.42 72,453.06 .058 [.052, .064] .034 .945 .957
Model 4c (4 factors 	 g) 306.53 81 72,130.12 72,397.72 .052 [.045, .058] .033 .956 .966
Model 4d (4 factors 	 g)b 303.62 80 72,129.21 72,401.77 .052 [.046, .058] .033 .956 .967
Model 5a (5 factors 	 g) 330.16 80 72,155.76 72,428.31 .055 [.049, .061] .034 .951 .963
Model 5b (5 factors 	 g)c 304.98 80 72,130.57 72,403.13 .052 [.046, .058] .034 .956 .966
Model 5c (5 factors 	 g)c 299.71 79 72,127.30 72,404.81 .052 [.045, .058] .034 .956 .967
Model 5d (5 factors 	 g)d 320.39 79 72,147.98 72,425.50 .054 [.048, .060] .034 .952 .964
Model 5e (5 factors 	 g)e 299.55 78 72,129.14 72,411.61 .052 [.046, .058] .034 .955 .967

Bifactor models
Model 2 (2 factors 	 g)f 355.30 75 72,190.89 72,488.22 .060 [.054, .066] .029 .941 .958
Model 3 (3 factors 	 g)g 257.37 75 72,092.96 72,390.30 .048 [.042, .055] .030 .962 .973
Model 4a (4 factors � g)h 213.06 75 72,048.66 72,345.99 .042 [.035, .049] .027 .971 .979
Model 4b (4 factors 	 g)i 233.75 76 72,067.34 72,359.72 .044 [.038, .051] .029 .967 .976
Model 4c (4 factors 	 g)j 207.04 74 72,044.63 72,346.92 .041 [.035, .048] .027 .972 .980
Model 4d (4 factors 	 g)k 206.60 73 72,046.19 72,353.44 .042 [.035, .049] .027 .971 .980
Model 5a (5 factors 	 g)l 237.93 77 72,069.52 72,356.94 .045 [.038, .051] .029 .967 .976
Model 5b (5 factors 	 g)m 249.18 76 72,082.77 72,375.15 .046 [.040, .053] .029 .964 .974
Model 5c (5 factors 	 g)n 232.76 75 72,068.36 72,365.69 .044 [.038, .051] .029 .967 .976
Model 5d (5 factors 	 g)o 237.93 77 72,069.52 72,356.94 .045 [.039, .052] .029 .967 .976
Model 5e (5 factors 	 g)p 232.69 75 72,068.28 72,365.62 .045 [.038, .051] .029 .967 .976

Note. N � 1,049. df � degrees of freedom; AIC � Akaike’s information criterion; BIC � Bayesian information criterion; RMSEA � root-mean-square
error of approximation; SRMR � standardized root-mean-square; TLI � Tucker-Lewis index; CFI � comparative fit index; g � general intelligence. Bold
text indicates best fitting model.
a Working Memory (WM) loading on g � 1, hence negative WM variance. b Arithmetic loading on Verbal Comprehension (VC) not significant. c Fluid
Reasoning (FR) loading on g � 1, hence negative FR variance. d Arithmetic loading on VC significant but weak (.16). e Arithmetic loading on VC not
significant; FR loading on g � 1, hence negative FR variance. f Visual Puzzles loading on F2 not significant, some loadings weak and negative (Matrix
Reasoning [MR]–F2; Figure Weights [FW]–F2). g Arithmetic loading on F1 not significant, some loadings (Digit Span [DS]–F1; Letter Number
Sequencing [LNS]–F1) were negative. h FW loading on Perceptual Reasoning (PR) was weak (.10), Arithmetic and Picture Span loadings on WM were
weak. i Loading of FW on WM was not significant, loadings of Arithmetic and Picture Span on WM were weak, negative loading of MR on
WM. j Loading of Picture Span on WM was not significant, Arithmetic loading on WM and PR were significant but weak (.14 and .10). k Arithmetic
loading on VC and Picture Span loading on WM not significant. l FW loading on FR (.14) and MR loading on FR (.14) were weak, Arithmetic loading
on WM (.14) was weak. m MR and Arithmetic loadings on FR not significant, Picture Span loading on WM was weak. n MR loading on FR not
significant, Arithmetic loading on FR (.06) was weak, Picture Span loading on WM (.12) was weak. o FW (.14) and MR (.14) loadings on FR were weak,
Picture Span loading on WM (.12) was weak. p FW was fixed, model did not converge, Arithmetic loading on VC and MR loading on FR not significant,
Arithmetic loading on FR (.06) was weak.
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preferred model for the French WISC–V. In comparing Model 4a
and Model 4c, when AR is cross-loaded (Model 4c) it effectively
diminishes the model variance of the PS subtest with WM where
it is not statistically significant and thus forcing it to be dropped.
When AR is not cross-loaded (Model 4a) then PS has a small yet
statistically significant relation with WM.

Table 4 presents the decomposed variance sources for bifactor
Model 4a and parallels that of Table 2. The g factor accounted for
37.2% of the total variance and 69.6% of the common variance.
This finding is consistent with the presence of a general intelli-
gence factor. Regarding subtests, the g factor accounted for be-
tween 8.8% (CA) and 53.1% (AR) of individual subtest variability.
At the group factor level, smaller portions of additional common
variance were provided by VC (9.6%), PR (5.3%), WM (4.4%),
and PS (11.2%). The combination of the general factor and group
factors measured 53.5% of the common variance; hence 46.5% of
the French WISC–V variance is unique (a combination of specific
and error variance). CA and PS were heavily influenced by unique
variance (77.4% and 63.9%, respectively). The �H and �HS coef-
ficients were estimated from bifactor Model 4a results. The �H

coefficient for the general factor was high (.844). The �HS coef-
ficients for the four group factors were lower and ranged from .100
(WM) to .464 (PS). Thus, the four French WISC–V group factors
suggested by CFA would produce unit-weighted composite scores
that likely possess too little unique true score variance for confi-
dent clinical interpretation (Reise, 2012; Reise et al., 2013).

Although higher-order and bifactor models achieved adequate
fit to these WISC–V data (i.e., TLI and CFI �.95, RMSEA and
SRMR �.06), the results of the present investigation suggested
that bifactor models fit better than the corresponding higher-order

model (for Models 4a, 4c, and 5a, �CFI and �TLI �.01); the
difference was not meaningful using �RMSEA (�.015). Likewise,
the bifactor models produced lower AIC than their corresponding
higher-order models. This result suggested that there are some
benefits to examine and describe bifactor models (Reise, 2012).

Discussion

According to the French WISC–V publisher, their CFA sup-
ported a model with one second-order factor (g) and five first-
order factors, and included three AR cross loadings, matching that
of the U.S. WISC–V (Wechsler, 2014). However, there are nu-
merous concerns regarding this French WISC–V factor structure
based on the CFAs reported in the French WISC–V Interpretive
Manual, as well as those reported in the U.S. WISC–V Technical
and Interpretive Manual, and undisclosed and nonstandard meth-
ods (Beaujean, 2016; Canivez et al., 2016, 2017). Therefore, the
French WISC–V factor structure was independently examined in
the present study using best practices in EFA, ESEM, and CFA.
For theoretical reasons, the WISC–V structure was examined with
both bifactor and higher-order models. While the publisher denied
access to the French WISC–V standardization sample raw data for
independent analyses, the availability of the 15 French WISC–V
subtest correlation matrix in the Interpretive Manual permitted
examination of EFA and reproduction of the covariance matrix for
use in CFA.

EFA results indicated that a model with five factors was inad-
equate because the fifth factor contained only one subtest indicator
with a salient pattern coefficient (AR). Instead, EFA indicated that
a four-factor solution was most plausible, that included the familiar

General 
Intelligence

SI VC IN CO BD VP MR FW

Verbal 
Comprehension

Perceptual 
Reasoning

.383* .577* .325* .396* .350* .130*.547* .098*

.688* .589* .687* .567* .675* .682* .639*.618*

AR DS LN PS CD SS CA

Working 
Memory

Processing 
Speed

.357* .434* .083 .547* .675* .371*

.706* .673* .694* .599* .393* .435* .298*

.206* .140*

Figure 1. Bifactor measurement model (Model 4c bifactor), with standardized coefficients, for the French
WISC–V standardization sample (N � 1,049) 15 subtests. SI � Similarities; VC � Vocabulary; IN �
Information; CO � Comprehension; BD � Block Design; VP � Visual Puzzles; MR � Matrix Reasoning;
FW � Figure Weights; AR � Arithmetic; DS � Digit Span; LN � Letter-Number Sequencing; PS � Picture
Span; CD � Coding; SS � Symbol Search; CA � Cancellation. � p � .05.
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VC, WM, PS, and PR as found in the U.S. WISC–V (Canivez et
al., 2016). Likewise, ESEM with bigeomin rotations (Morin,
Arens, et al., 2016, Morin, Arens, Tran, et al., 2016) did not
identify five group factors, but rather indicated that a bifactor
model with three factors was the most plausible and included VC,
PS, and a mixture of VS and WM. The SLT applied to the
four-factor EFA indicated that the g factor explained most of the
common and total variance in the current French WISC–V as
previously observed by Canivez et al. (2016). CFA results sug-
gested that the bifactor model with four first-order group factors
provided better fit to these French WISC–V data than the higher-
order model, replicating the results of Canivez et al. (2017) with
the U.S. WISC–V.

EFA indicated that in the five-factor model, the fifth factor
contained only the AR subtest, while in the U.S. WISC–V the fifth
factor contained only the FW subtest (Canivez et al., 2016). In the
French WISC–V the AR score clearly was neither associated with
the FR factor nor with the WM factor. In the four first-order factor
model, AR was associated with WM and PR. Extracting more
factors than appropriate may have stripped variance away from
legitimate factors to support the fifth factor. These findings could
suggest that AR is mainly a measure of another factor, which may
be quantitative reasoning (Gq), as was suggested with the U.S.
WISC–III (Watkins, & Ravert, 2013) and the French WISC–IV
(Lecerf, Rossier, Favez, Reverte, & Coleaux, 2010). Problems
with continued inclusion of AR in the WISC without additional
quantitative reasoning tasks have been noted (Canivez & Kush,
2013).

In addition, neither the five- nor four-factor models showed
evidence for the distinction between VS and PR factors. There was

no separation of BD and VP into a VS factor and MR and FW into
a FR factor. These four subtests combined into the familiar PR
factor observed in earlier Wechsler scales and the U.S. WISC–V
(Canivez et al., 2016). This finding indicated that the separation of
FR and VS was unsuccessful in both the U.S. WISC–V and in the
French WISC–V. Therefore, separate VSI and FRI scores are
likely misleading. If separate VSI and FRI scores are important
and to be used in clinical assessments it is necessary to develop
tasks which more clearly separate the visual-spatial and the fluid
reasoning components (if this can actually be accomplished). For
instance, because the MR subtest requires inductive reasoning
(Gf-I) with perceptual patterns, the overlap might be too great to
allow a clear distinction between fluid reasoning and visual pro-
cessing. Thus, mechanically interpreting the distinction between
Gf and Gv factors using VSI and FRI cannot be recommended.

Bifactor ESEM with bigeomin rotations (Morin, Arens, et al.,
2016, Morin, Arens, Tran, et al., 2016) revealed similar results, as
models with five, six, and seven factors did not converge. Results
indicated that a bifactor model with three group factors was the
most plausible, and included VC, PS, and a mixture of VS and
WM. Indeed, with an oblique rotation, LNS, DS, AR, and PS
loaded positively on this third factor, while VP and BD loaded
negatively. As this bipolar factor is rotated, it was assumed that the
positive loadings of LNS, DS, AR, and PS and the negative
loadings of VP and BD may result from the contribution of
Working Memory Capacity (WMC). BD and VP involve WMC.
MR loaded weakly on this factor only with an orthogonal rotation,
while FW did not load on this VS/WM factor either with orthog-
onal or with oblique rotation. As mentioned previously, this result
might suggest that MR relies on FR and visual processing, like BD

General 
Intelligence

SI VC IN CO BD VP MR FW

Verbal 
Comprehension

Perceptual 
Reasoning

.394* .580* .333* .406* .348* .198*.506* .103*

.681* .583* .684* .561* .691* .685* .646*.626*

AR DS LN PS CD SS CA

Working 
Memory

Processing 
Speed

.097* .349* .455* .103* .548* .675* .372*

.729* .671* .690* .592* .392* .435* .296*

Figure 2. Bifactor measurement model (Model 4a bifactor), with standardized coefficients, for the French
WISC–V standardization sample (N � 1,049) 15 subtests. SI � Similarities; VC � Vocabulary; IN �
Information; CO � Comprehension; BD � Block Design; VP � Visual Puzzles; MR � Matrix Reasoning;
FW � Figure Weights; AR � Arithmetic; DS � Digit Span; LN � Letter-Number Sequencing; PS � Picture
Span; CD � Coding; SS � Symbol Search; CA � Cancellation. � p � .05.
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and VP. It can also be hypothesized that MR loaded on this factor
because it relies on WM. Several studies have shown strong
correlations between WM and FR. Chuderski and Necka (2012),
for instance, revealed that storage capacity (i.e., WMC) predicted
fluid intelligence more than did executive control. However, in the
present study, FW, which is also considered a fluid intelligence
task (a quantitative reasoning task), did not load on this factor.
Therefore, it might be assumed that the BD, VP, and MR loadings
might reflect the contribution of visual processing rather than the
contribution of working memory. The implication of both EFA and
ESEM results is that the French WISC–V appears to be overfac-
tored as promoted by the publisher and that the role of broad and
specific abilities in subtest scores are inflated or overestimated.
This calls into question the interpretation procedures promoted the
French WISC–V publisher.

The SLT applied to the four-factor EFA and the examination of
model-based reliability coefficients (�H and �HS coefficients)
indicated that the g factor accounted for the largest portion of
French WISC–V variance. These findings were consistent with
results obtained by Canivez et al. (2016) with the U.S. WISC–V,
and also with other Wechsler scales and with other intelligence test
batteries like SB5, WASI, WRIT, and RIAS (Canivez, 2008;
Canivez et al., 2009; Canivez & Watkins, 2010; Cucina & How-
ardson, 2017; Dombrowski et al., 2009; Golay & Lecerf, 2011;
Watkins et al., 2006). The four first-order factor model results with
the French WISC–V were very similar to those obtained with the
U.S. WISC–V. Canivez et al. (2016) found that VC explained
9.2% (vs. 10.2% here), PR 5.6% (vs. 6.8), WM 6.5% (vs. 10.8%),
and PS 11.6% (vs. 10.8) of the common variance. The SLT with
four first-order factors conducted on the French WISC–V were
also relatively consistent with results obtained with the previous
version of the French WISC, the French WISC–IV (Wechsler,
2005). The g factor explained 67.0% of the common variance in
the current French WISC–V, while it was 60.3% in the French
WISC–IV (Lecerf et al., 2011). The portion of variance accounted
for by the g factor is thus higher in the new French WISC–V.
Furthermore, in the previous French WISC–IV the common vari-
ance explained by the VC was 14.3% (vs. 10.2% in the French
WISC–V), 12.9% for PS (vs. 11.9%), 7.2% for WM (4.2%), and
5.4% for PR (vs. 6.8%).

Model-based reliability coefficients (�H and �HS coefficients)
estimated in both French WISC–V EFA and CFA indicated that
when g variance is removed, the unique contributions of the broad
abilities were quite limited. The �H coefficient for the general
factor was high, and hence a unit-weighted composite score based
on these indicators would be satisfactory for confident interpreta-
tion. The �HS coefficients for the four group factors were consid-
erably lower, failing to achieve the recommended minimum stan-
dard of .50 (Reise, 2012; Reise et al., 2013). These findings were
consistent with Canivez et al. (2016) who found in the U.S.
WISC–V that �HS ranged from .109 (PR) to .516 (PS). This
indicates that unit-weighted composite scores derived from subtest
indicators for VC, PR, WM, and PS likely contain too little unique
true-score variance for confident interpretation (Reise, 2012; Reise
et al., 2013). Thus, �HS in the present study were also not high
enough in the French WISC–V to allow individual interpretation,
even for PS. This supports a perspective more consistent with
Carroll’s three-stratum model than with the Cattell-Horn extended
Gf-Gc model. Indeed, while Cattell-Horn excluded the g factor and

considered it a statistical artifact, Carroll demonstrated the impor-
tance of the g factor. Likewise, Carroll suggested that subtest score
is explained first by g, then by one or more broad ability, then by
one or more narrow ability, and finally by unique variance. Al-
though several broad abilities exist independently of the g factor,
it appears that they are difficult to measure with appropriate level
of precision. That is one reason why some authors defend Carroll’s
model rather than the Cattell-Horn model (Cucina & Howardson,
2017).

The present CFA indicated that the French WISC–V bifactor
model provided better fit to these data than the higher-order model
(�TLI, �CFI, and AIC) and that the bifactor model with four
rather than five first-order group factors better described the latent
structure of the French WISC–V. This finding was consistent with
analyses conducted on the U.S. WISC–V (Canivez et al., 2017),
but was different than that reported by Chen et al. (2015). How-
ever, it is important to consider Murray and Johnson’s (2013);
Gignac’s (2016), and Mansolf and Reise’s (2017) suggestions that
bifactor models might benefit from statistical bias, due to the
proportionality constraint or tetrad constraints. Therefore, although
the bifactor model fits better, it does not necessarily indicate that
it is a better description of ability structure. However, Murray and
Johnson concluded that when there is an attempt to estimate or
account for domain-specific abilities, something specifically rec-
ommended by the French WISC–V publisher, the “bifactor model
factor scores should be preferred” (Murray & Johnson, 2013, p.
420). Our preference for a bifactor model is based also on theo-
retical perspective. In the bifactor model, the general factor and the
first-order factors directly influence the subtest scores and is
consistent with Carroll (1993) and Spearman (1927) perspectives.
The g factor has no direct effects on the first-order factors, which
are modeled orthogonally to each other. The bifactor model tests
the presence of a global construct underlying all indicators and the
coexistence of specific factors (group factor). Thus, the bifactor
model is a breadth factor that permits multidimensionality by
determining how broad abilities perform independent of the g
factor. With the higher-order model, the broad abilities fully me-
diate the effect of g on the subtest scores. The g factor influences
the subtest scores through the first-order factors. Thus, the bifactor
model was considered more appropriate, because the conceptual-
ization of the general factor as a breadth factor is preferable to its
conceptualization as superordinate factor (Gignac, 2008). In our
view, the relationship between the g factor and each subtest is not
mediated by the first-order broad abilities.

In summary, the results of the present study indicated that the
French WISC–V is overfactored when including five first-order
factors. Results indicated that the higher-order model preferred by
the publisher of the French WISC–V incorrectly concludes that the
broad abilities provide useful information distinct from g. By
reporting only higher-order models, the French WISC–V publish-
ers overestimate the role of broad and specific abilities in subtest
scores. This “overfactoring” could be due to the variance general
factor’s omission, and/or due to failing to consider use of EFA to
inform latent structure and forcing their preconceived five-factor
model. In contrast, the present results indicated that the French
WISC–V is primarily a measure of g, because it accounts for
substantially larger portions of common and total subtest variance,
and supports the primary interpretation of the FSIQ. Although the
FSIQ is not strictly equivalent to the g factor, the FSIQ is a good
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estimator of this general factor. These findings are consistent with
Spearman (1927) and Carroll’s (1993) conceptualizations of g.
Given the overwhelming dominance of the general factor, the
present results indicated that interpretation of first-order factors is
quite limited and problematic given the conflation of general and
group factor variance in index scores. Further, some studies have
shown that the temporal stability of index scores was not suffi-
ciently high (Kieng, Rossier, Favez, & Lecerf, 2017; Watkins &
Smith, 2013).

Limitations

While critically important, EFA and CFA cannot by themselves
fully determine construct validity of the French WISC–V so stud-
ies of relations with external criteria are needed. Methods such as
incremental predictive validity (Canivez, 2013a; Canivez, Wat-
kins, James, Good, & James, 2014; Glutting, Watkins, Konold, &
McDermott, 2006) could help determine if reliable achievement
variance is incrementally accounted for by the French WISC–V
factor index scores beyond that accounted for by the FSIQ (or
through latent factor scores [see also Kranzler, Benson, & Floyd,
2015]). Diagnostic utility (Canivez, 2013b) studies should also be
examined to determine if differential patterns of French WISC–V
factor index scores correctly identify individuals of differing clin-
ical disorders. However, given the small portions of true score
variance uniquely contributed by the group factors of the French
WISC–V it is inconceivable that they would provide substantial
value. Another limitation is that the present study examined EFA
and CFA for the full French WISC–V standardization sample. It is
possible that different age groups within the French WISC–V
standardization sample might produce different results so exami-
nation of structural invariance across age (and other variables)
would be useful. Further, these results also pertain to the standard-
ization normative sample and may not generalize to clinical pop-
ulations or independent samples of nonclinical groups.

Conclusion

From a practical point of view, the present results have several
important implications for the interpretation of French WISC–V
subtests and the factor index scores. The higher-order model
proposed by the test publisher is not adequate, which could be
quite problematic from a clinical point of view and may lead to
errors in interpreting the scores (Silverstein, 1993). Practitioners
must be aware that they are taking some risks when interpreting
factor index scores, particularly VS and FR. Thus, it is recom-
mended that practitioners use several reading grids of interpreta-
tion and not rely only on the interpretation promoted by the
publisher. The present results suggested that primary interpretation
of the French WISC–V should focus on the global FSIQ rather
than on the first-order group factors, because the g factor accounts
for the largest part of the common variance. It is encouraging that
the publisher suggested interpretation the FSIQ at the first step,
challenging the steps of interpretation recommended with the
WISC–IV (Kaufman, Raiford, & Coalson, 2016). Factor index
scores, however, conflate g variance and unique group factor
variance, which cannot be disentangled for individuals. The factor
index scores cannot be considered to reflect only broad ability
measurement; indeed, they include a strong contribution of the
general intelligence factor.
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Correction to Lecerf and Canivez (2018)

In the article “Complementary Exploratory and Confirmatory Factor Analyses of the French
WISC–V: Analyses Based on the Standardization Sample” by Thierry Lecerf and Gary L. Canivez
(Psychological Assessment, 2018, Vol. 30, No. 6, pp. 793–808. http://dx.doi.org/10.1037/
pas0000526), a production error resulted in the deletion of subtests in the “French WISC–V subtest”
column and the misalignment of factor names in the “Eigenvalue” column of Table 1. The table
should read as follows:

Table 1
French Wechsler Intelligence Scale for Children—Fifth Edition (French WISC–V) Four Oblique
Factor Solution for the Total Standardization Sample

French WISC–V
subtest General

F1: Verbal
Comprehension

F2: Perceptual
Reasoning

F3: Processing
Speed

F4: Working
Memory h2

SI .724 .672 (.481) .135 (.609) �.065 (.304) .058 (.616) .623
VC .666 .918 (.809) �.054 (.503) �.034 (.271) �.080 (.531) .664
IN .716 .611 (.749) .149 (.607) .005 (.350) .045 (.604) .577
CO .621 .707 (.698) �.091 (.463) .120 (.364) .008 (.513) .499
BD .652 �.013 (.478) .733 (.719) .121 (.444) �.088 (.514) .530
VP .719 �.058 (.521) .922 (.825) .015 (.416) �.086 (.573) .687
MR .683 .087 (.557) .589 (.710) �.057 (.337) .120 (.598) .519
FW .628 .130 (.534) .462 (.632) �.090 (.281) .167 (.565) .431
AR .708 .089 (.583) .302 (.661) .031 (.407) .374 (.682) .520
DS .686 �.036 (.553) .035 (.588) �.074 (.336) .818 (.781) .615
PS .592 .021 (.458) .225 (.546) .173 (.440) .291 (.561) .372
LNS .716 .038 (.591) �.084 (.579) .055 (.430) .809 (.801) .646
CD .446 .055 (.307) �.057 (.344) .698 (.697) .012 (.356) .488
SS .491 �.014 (.314) .015 (.401) .758 (.768) .015 (.393) .589
CA .327 �.024 (.203) .106 (.291) .467 (.488) �.047 (.247) .242

Eigenvalue 6.49 1.46 1.02 .80

Factor correlations F1: VC F2: PR F3: PS F4: WM
Verbal Comprehension (VC)
Perceptual Reasoning (PR) .690
Processing Speed (PS) .404 .507
Working Memory (WM) .727 .752 .497

Note. N � 1,049. French WISC–V subtests: SI � Similarities; VC � Vocabulary; IN � Information; CO �
Comprehension; BD � Block Design; VP � Visual Puzzles; MR � Matrix Reasoning; FW � Figure Weights;
AR � Arithmetic; DS � Digit Span; PS � Picture Span; LNS � Letter-Number Sequencing; CD � Coding;
SS � Symbol Search; CA � Cancellation. Salient pattern coefficients (�.30) presented in bold (structure
coefficient). h2 � Communality. General structure coefficients are based on the first unrotated factor coefficients
(g loadings).

The online version of this article has been corrected.

http://dx.doi.org/10.1037/pas0000638
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