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ABSTRACT
The reliability and factorial validity of the Wechsler Intelligence Scale for Children–Fifth Edition:
Canadian (WISC-VCDN) was investigated. The higher-order model preferred by Wechsler (2014b)
contained five group factors but lacked discriminant validity. An alternative bifactor model with
four group factors and one general factor, akin to the traditional Wechsler model, exhibited the
best global fit. The general factor accounted for 33.8% of the total variance and 67.6% of the
common variance, but none of the group factors accounted for substantial portions of variance.
All together, the general and group factors accounted for 50% of the total variance. Omega
reliability coefficients demonstrated that reliable variance of WISC-VCDN factor index scores was
primarily due to the general factor, not the group factors. It was concluded that the cumulative
weight of reliability and validity evidence suggests that psychologists should focus their inter-
pretive efforts at the general factor level and exercise extreme caution when using group factor
scores to make decisions about individuals.
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The administration and interpretation of standardized
psychological tests to assess cognitive functioning is a
fundamental responsibility of psychologists (Australian
Psychological Society [APS], 2009; Canadian
Psychological Association [CPA], 2007; Evers et al.,
2012; Hsu, Huang, & Cheng, 2009; Kranzler, 2016;
Kranzler, Benson, & Floyd, 2016). Because “incompe-
tent action is unethical per se” (CPA, 2000, p. 15),
psychological assessment requires that psychologists
have “a thorough understanding of statistics and psy-
chometrics” sufficient to comprehend “the technical
merits of selected instruments in terms of such char-
acteristics as validity, reliability, standardization and
test construction” (CPA, 2007, p. 8). Similar demands
for understanding and applying psychometric evidence
to test selection and interpretation have been articu-
lated in other professional standards (American
Educational Research Association [AERA], American
Psychological Association [APA], & National Council
on Measurement in Education [NCME], 2014; APS,
2009; British Psychological Society [BPS], 2007; Evers
et al., 2013; International Test Commission [ITC],
2001; Krishnamurthy et al., 2004).

Psychometric competence is important when evaluat-
ing new assessment instruments (CPA, 2007). However, it
is likely that “new” cognitive instruments encountered by

psychologists will be revisions of existing instruments. In
that case, Beaujean (2015a) recommended that a revision
be treated as a new test because scores from the two
instruments cannot be assumed to be directly comparable
without supporting evidence. For example, subtest pat-
terns and psychometric characteristics have been found to
differ across Wechsler versions (Benson, Beaujean, &
Taub, 2015; Strauss, Spreen, & Hunter, 2000).

Canadian WISC-V

A salient “new” test, the Wechsler Intelligence Scale for
Children–Fifth Edition: Canadian (WISC-VCDN;
Wechsler, 2014a), was recently published. According to
Beaujean (2015a), its scores cannot be assumed to be
identical to those of its predecessor and its psychometric
merits must be independently evaluated by prospective
users (AERA, APA, & NCME, 2014; CPA, 2007). This
seems especially appropriate because the WISC-VCDN

was a major revision involving the addition of three new
subtests and two new factor indices, deletion of two
subtests, and changes to the contents and instructions of
all remaining subtests (Wechsler, 2014b).

Considerable psychometric information on the
WISC-VCDN was provided in its manual (Wechsler,
2014b). However, sole reliance on the opinion of test
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authors and publishers “is akin to relying solely on the
opinions provided by pharmaceutical companies to
make decisions on whether to take their medication.
While their information can be valuable, these indivi-
duals . . . have a conflict of interest” (Beaujean, 2015a,
p. 53). Additional information about the WISC-VCDN

can be obtained from independent test reviews. For
example, the WISC-VCDN was recently reviewed and
found to maintain “many of the strong practical and
psychometric qualities of its predecessors,” but the size
of its norming sample was criticized as insufficient
(Cormier, Kennedy, & Aquilina, 2016, p. 332).

Although this review of the WISC-VCDN characterized
its psychometric properties as strong, it did not critically
analyze the psychometric evidence presented by Wechsler
(2014b) to support its claims of reliability and validity of the
WISC-VCDN.Norwas that psychometric evidence critically
evaluated in a review of theU.S. version of theWISC-V (Na
& Burns, 2016). Specifically, psychometric evidence pre-
sented by Wechsler (2014b, 2014c) was uncritically
reported with no evaluation of the methods used to esti-
mate reliability nor the degree to which the scoring struc-
ture of theWISC-Vmatched the theoretical structure of the
underlying constructs it purports to measure—that is, evi-
dence to support its factorial or structural validity (Messick,
1995). These omissions are puzzling, given that methodo-
logical and practical problems with similar reliability and
validitymethods have previously been reported (Canivez &
Kush, 2013; Canivez,Watkins, &Dombrowski, 2016, 2017;
Dombrowski, Canivez, Watkins, & Beaujean, 2015).

Validity

Regarding factorial validity, Wechsler (2014b) proposed
a higher-order structure for the WISC-VCDN with an
overarching general intelligence (g) factor being loaded

by five general factors which, in turn, were loaded by 16
primary and secondary subtests. This structure is illu-
strated in Figure 1 and was obtained via confirmatory
factor analysis (CFA). However, “CFA studies based
upon weak theoretical perspectives, lack of testing alter-
native theoretical views, or insufficient evidence may
not offer adequate support of construct validity”
(DiStefano & Hess, 2005, p. 225).

Guided by best practices in CFA (Bowen & Guo, 2012;
Brown, 2015; DiStefano & Hess, 2005; Kline, 2016;
MacCallum & Austin, 2000; McDonald & Ho, 2002;
Widaman, 2012), there are six notable concerns regarding
the CFA methods reported byWechsler (2014b). First, not
all plausible WISC-VCDN models were tested by Wechsler
(2014b). Inclusion of alternative conceptualizations of test
structure is essential to provide convincing support for one
model over another (Brown, 2015). Failure to include alter-
native models makes researchers susceptible to confirma-
tion bias (MacCallum & Austin, 2000). That is, prone to
seek or interpret “evidence in ways that are partial to
existing beliefs” (Nickerson, 1998). For example,
Wechsler (2014b, p. 53) stated that the preferred five-factor
model “is supported by strong model fit indicators and
consistently high factor loadings.” However, Figure 1
clearly shows standardized factor loadings that are not
generally considered to be high (e.g., .19–.34; DiStefano &
Hess, 2005; Widaman, 2012).

The potential for confirmation bias may have been
heightened by the nature of the models selected for evalua-
tion of the WISC-VCDN. According to Wechsler (2014b),
CFA was used “to confirm whether the final factor model
specified in the U.S. WISC-V could be applied to the
Canadian WISC-V” (p. 48). Thus, only those models pre-
viously selected by the publisher of the U.S. WISC-V were
included. A further caution concerns an intrinsic limitation
of CFA. Namely, CFA can demonstrate that a model is

Figure 1. Standardized structure of the WISC-VCDN proposed by Wechsler (2014b).
SI = Similarities, VO = Vocabulary, IN = Information, CO = Comprehension, DS = Digit Span, LN = Letter-Number Sequencing, PS = Picture
Span, AR = Arithmetic, MR = Matrix Reasoning, FW = Figure Weights, PC = Picture Concepts, BD = Block Design, VP = Visual Puzzles, CD =
Coding, SS = Symbol Search, CA = Cancellation, VC = Verbal Comprehension factor, WM = Working Memory factor, FR = Fluid Reasoning
factor, VS = Visual Spatial factor, PS = Processing Speed factor, and g = General Intelligence.
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consistent with the data but “it does not confirm the vera-
city of the researcher’s model” (Kline, 2016, p. 21).

There is a variety of factorial models that can repre-
sent the structure of cognitive abilities. Those that
include a general intelligence factor can be roughly
separated into higher-order versus bifactor (sometimes
called nested or direct hierarchical) models (Beaujean,
2015b). Figure 2 illustrates those two types of models.
The higher-order model conceptualizes g as a super-
ordinate factor having a direct effect on several group
factors but only an indirect effect on the measured
variables. Thus, the relationship of general intelligence
to the measured variables is fully mediated by the group
factors. In contrast, the bifactor model conceptualizes g
as a breadth factor having direct effects on the mea-
sured variables, as do the group factors. Wechsler
(2014b) only evaluated higher-order factor models for
the WISC-VCDN. Carroll’s (1993) cognitive model,
which is best represented through a bifactor model
(Beaujean, 2015b), was incorporated into the Cattell-
Horn-Carroll theory (CHC; Schneider & McGrew,
2012) that was considered in development of the
WISC-VCDN (Wechsler, 2014b). Additionally, bifactor

models have been found to be good representations of
the structure of other tests of cognitive ability (Brunner,
Nagy, & Wilhelm, 2012; Canivez, 2014; Cucina &
Howardson, 2017; Dombrowski et al., 2015; Gignac &
Watkins, 2013; Golay, Reverte, Rossier, Favez, & Lecerf,
2013; Watkins & Beaujean, 2014). Finally, the bifactor
model is a viable candidate for measures that have
demonstrated good fit to a second-order model
(Reise, 2012) and offers advantages for subsequent
investigations of reliability and external validity
(Benson, Kranzler, & Floyd, 2016; Brown, 2015;
Canivez, 2016; Chen, Hayes, Carver, Laurenceau, &
Zhang, 2012; Reise, Moore, & Haviland, 2010).
Therefore, the omission of bifactor models from the
CFA of Wechsler (2014b) calls into question the scor-
ing structure of the WISC-VCDN (Wasserman &
Bracken, 2013).

Second, the method used to scale the latent variables
in CFA models was not disclosed by Wechsler (2014b).
In CFA, the distribution of latent variables (i.e., factors)
and disturbance terms (i.e., factor variances) requires
that some components be fixed in order to scale the
latent variables and allow the model to be statistically

Figure 2. Conceptual illustration of higher-order versus bifactor models.
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identified. The choice of scaling method can affect
unstandardized parameters and may “yield different
conclusions regarding the statistical significance of
freely estimated parameters” (Brown, 2015, p. 133).
Typically, either a reference indicator loading or a
latent variable variance is fixed. Beaujean (2016) repli-
cated the results reported in Wechsler (2014c) and
deduced that an effects-coding method (Little, Slegers,
& Card, 2006) was probably used with the U.S. WISC-
V. All three methods should produce the same global
model fit measures (i.e., chi-square, degrees of freedom,
approximate fit indices) but Beaujean (2016) demon-
strated that a modification of the effects-coding method
was used in U.S. WISC-V analyses (2014c) that caused
degrees of freedom to be understated with cascading
consequences for fit statistics that rely on degrees of
freedom for their computation. Beaujean (2016) con-
cluded that this modified effects-coding method
“should be employed with caution because it could
produce multiple problems” (p. 406). Given that the
analyses reported by Wechsler (2014b) for the
Canadian WISC-V mirror those found in Wechsler
(2014c) for the U.S. WISC-V, it appears that this mod-
ified effects-coding method was also employed in the
WISC-VCDN CFA. The consequences of using a non-
standard scaling method in the WISC-VCDN analyses
are unknown but should be explored through replica-
tion using conventional scaling methods.

Third, the method of estimating parameters in the
CFA models tested by Wechsler (2014b) was nonstan-
dard. “The choice of estimation method becomes essen-
tial because it will affect evaluation of model fit and
parameter estimates” (Lei & Wu, 2012). Maximum like-
lihood (ML) estimation is typically used with multi-
variate continuous data and either weighted least
squares (WLS) or robust ML with nonnormal data
(Brown, 2015). Wechsler (2014b) reported that WLS
estimation via SAS software was employed in CFA of
the WISC-VCDN. In its default version, the SAS WLS
estimator is an asymptotic distribution-free estimator
that is biased with sample sizes as small as those found
in the WISC-VCDN standardization sample (Lei & Wu,
2012). When considering estimators for continuous
data, Hoyle (2000, p. 478) cautioned that “the use of
an estimator other than maximum likelihood requires
explicit justification” and Brown (2015, p. 346) con-
cluded that “WLS is not recommended.” Given these
caveats, use of WLS is perplexing and represents a
departure from the use of ML estimation typically
observed in CFA of intelligence tests. Its effect is
unknown but should be investigated.

Fourth, the preferred five-factor model abandoned
the parsimony of simple structure (Thurstone, 1947) by

allowing multiple cross-loadings of the Arithmetic
subtest (see Figure 1). Simple structure facilitates inter-
pretation because each variable loads onto only one
factor. From a broader perspective, the parsimony of
simple structure honors “the purpose of science
[which] is to uncover the relatively simple deep struc-
ture principles or causes that underlie the apparent
complexity observed at the surface structure level”
(Le, Schmidt, Harter, & Lauver, 2010, p. 112).
Following this concept, cross-loadings that are not
both statistically and practically significant (i.e., > .30)
might best be constrained to zero (Stromeyer, Miller,
Sriramachandramurthy, & DeMartino, 2015). In fact,
simple structure is implied by the scoring structure of
the WISC-VCDN where composite scores are created
from unit-weighted sums of separate subtest scores.
Thus, the preferred five-factor model is discrepant
from the scoring structure of the WISC-VCDN.
Additionally, this complex structure can create identi-
fication problems because it deviates from an indepen-
dent clusters structure (McDonald & Ho, 2002),
especially when the primary index scales are formed
by only two subtests.

Fifth, selection of the preferred five-factor model was
primarily based on chi-square difference tests of nested
models. Wechsler (2014b) acknowledged the sensitivity
of the chi-square test of exact fit to trivial differences
when analyzing large samples, but nevertheless used
chi-square difference tests of nested models to identify
the preferred five-factor model. However, large samples
also make the chi-square difference test sensitive to
trivial differences. In fact, Millsap (2007) admonished
that “ignoring the global chi-square tests while at the
same time conducting and interpreting chi-square dif-
ference tests between nested models should be prohib-
ited as nonsensical.” Additionally, there was no control
of Type I error levels for these multiple statistical tests
(Shaffer, 1995). For example, Wechsler (2014b)
reported 9 chi-square difference tests at the .05 alpha
level, which with a simple Bonferroni correction would
suggest that each test should be set at .006 to maintain a
study-wide error rate at the .05 level. Hence, the differ-
ences in global fit relied on by Wechsler (2014b) to
select preferred models might reflect only trivial differ-
ences between models.

A somewhat related sixth concern is that global
model fit, by itself, is an inadequate measure of model
veracity (Bowen & Guo, 2012; Brown, 2015; DiStefano
& Hess, 2005; Kline, 2016; MacCallum & Austin, 2000;
Widaman, 2012). Even with good global fit, relation-
ships among variables might be weak, parameter esti-
mates might not be statistically significant, the latent
variables might not account for meaningful variance in
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the indicators, or parameter values might be out of
range (e.g., factor loadings that exceed 1.00, negative
variance estimates, etc.). Even if not out of range, latent
variables with nonsignificant variances “are not useful
measures because they do not capture meaningful dif-
ferences among individuals” (Bowen & Guo, 2012, p.
147). Wechsler (2014b) did not report the statistical
significance of parameter estimates but a review of
Figure 1, the publisher-preferred structural model for
the WISC-VCDN, reveals a standardized path coefficient
of 1.01 between the higher-order general intelligence
factor and the first-order Fluid Reasoning (FR) factor
as well as a negative variance estimate (–.01) for the FR
factor. This suggests that the g and FR factors were
empirically redundant (Le et al., 2010), which constitu-
tes a major threat to discriminant validity (Brown,
2015) and signals that the WISC-VCDN may have
been overfactored (Frazier & Youngstrom, 2007).
Further, to search for better global model fit by testing
mulitple variations of well-fitting models as done by
Wechsler (2014b) may capitalize on sampling error and
lead to final models that are not generalizable (Myung,
2000). Relatedly, Wechsler (2014b) failed to report the
proportions of variance accounted for by general and
group factors, nor the communality of measured vari-
ables. These statistics speak to the relationships of mea-
sured and latent variables and may be important for
accurate interpretation of common factors (Brown,
2015; MacCallum & Austin, 2000).

Reliability

Concerns regarding reliability of WISC-VCDN scores
are interrelated with concerns about the validity of its
scores because reliability is necessary but not sufficient
for validity (Geisinger, 2013). Different estimates of
reliability assess different sources of scoring inconsis-
tency. For example, test–retest coefficients tap the con-
sistency of responses across time while internal
consistency coefficients meter the consistency of
responses across test content. Nevertheless, all reliabil-
ity estimates are a property of the scores on a test for a
specific group of examinees (Geisinger, 2013). That is,
estimates might differ from sample to sample. This
distinction is important because Wechsler (2014b) did
not compute test–retest reliability estimates for the
WISC-VCDN standardization sample. Rather, stability
coefficients from the U.S. standardization of the
WISC-V were reported for the WISC-VCDN. This sub-
stitution was especially meaningful for the speeded
subtests that comprise one of the composite index
scores. Consequently, the reliability of those scores
among Canadian children is unknown.

Wechsler (2014b) reported split-half coefficients
computed from the standardization sample as indices
of reliability for nonspeeded WISC-VCDN subtests. The
resulting coefficients ranged from .83 to .94, whereas
composite index score coefficients based on those subt-
ests ranged from .91 to .96. Wechsler (2014b) charac-
terized these coefficients as evidence providing “strong
support for the precision of WISC-V scores” (p. 39).
Given these strong reliability coefficients, clinicians
have been encouraged to interpret WISC-VCDN score
patterns, especially those at the factor index level
(Wechsler, 2014b).

However, neither the method used to split subtests
into equivalent scales nor the method used to compute
reliability indices for composite scores were specifically
identified by Wechsler (2014b). Critically, the assump-
tions underlying the split-half method were neither
explicated nor satisfied. Internal consistency coeffi-
cients may be biased, either too low or too high, when
those assumptions are violated, as they undoubtedly are
in multidimensional tests like the WISC-VCDN (Brown,
2015; Brunner et al., 2012; Raykov & Marcoulides,
2011). Given this reality, Geisinger (2013, p. 41) con-
cluded that split-half reliability “should be seen primar-
ily as a historical approach to estimating reliability . . .
[and] there is simply no reason to use these procedures
today.” This opinion seems to be widely shared among
measurement experts (Evers et al., 2013; Raykov &
Marcoulides, 2011).

As an alternative to split-half and alpha internal
consistency reliability estimates, model-based reliability
estimates that make fewer and more realistic assump-
tions have been developed (Dunn, Baguley, &
Brunsden, 2014; Reise, 2012). Critically, model-based
estimates properly estimate reliability for multidimen-
sional tests where item scales and factor loadings differ
(Brunner et al., 2012; Hancock & Mueller, 2001). The
omega (ω) family of coefficients (McDonald, 1999;
Zinbarg, Revelle, Yovel, & Li, 2005) are the principal
model-based reliability coefficients reported in current
research. They replace the classical test theory hypoth-
esis of true and error variance with the factor analytic
conceptualization of common and unique variance.
Especially for multidimensional tests like the WISC-
VCDN, omega “provides a better estimate for the com-
posite score and thus should be used (Chen et al., 2012,
p. 228).

There are several omega variants. The most general
omega coefficient is omega total (ω), which is an “estimate
of the proportion of variance in the unit-weighted total
score attributable to all sources of common variance”
(Rodriguez, Reise, &Haviland, 2016, p. 224). Highω values
indicate a highly reliable multidimensional total composite
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score.ω can also be computed for each subscale score using
the same logic. That is, the proportion of variance in each
unit-weighted subscale score that can be attributed to a
blend of general and group factor variance. Called omega
subscale (ωs), high values indicate a highly reliable multi-
dimensional group composite score. Akin to coefficient
alpha, ω and ωs both reflect the systematic variance attri-
butable to multiple common factors but neither can distin-
guish between the precision of the general factor versus the
precision of the group factor (Brunner et al., 2012). There is
no universally accepted guideline for coefficient alpha
values sufficient for high-stakes decisions about indivi-
duals, but values in the .80–.90 range are commonly recom-
mended (Thorndike & Thorndike-Christ, 2010;
Wasserman & Bracken, 2013). Given their similarity,
omega coefficients should meet the same standard as
alpha coefficients.

The distinction between general and group factor
variance can be made with omega hierarchical coeffi-
cients because they reflect variance attributable to a
single factor independent of all other factors and are
therefore measures of the precision with which a score
assesses a single construct. When applied to the general
factor, omega hierarchical (ωh) is the ratio of the var-
iance of the general factor compared to the total test
variance and “reflects the percentage of systematic var-
iance in unit-weighted total scores that can be attribu-
ted to the individual differences on the general factor”
(Rodriguez et al., 2016, p. 224). Called omega hierarch-
ical subscale (ωhs) when applied to group factors, this
index identifies the proportion of variance in the group
factor score that is solely accounted for by its intended
construct. If ωhs is low relative to ωs, most of the
reliable variance of that group factor score is due to
the general factor, which precludes meaningful inter-
pretation of that group factor score as an unambiguous
indicator of the target construct (Rodriguez et al.,
2016). In contrast, a robust ωhs coefficient suggests
that most of the reliable variance of that group factor
score is independent of the general factor, and clinical
interpretation of an examinee’s strengths and weak-
nesses beyond the general factor can be conducted
(Brunner et al., 2012; DeMars, 2013; Reise, 2012).
There is no empirically based guideline for acceptable
levels of omega hierarchical coefficients for individual
clinical decisions, but it has been suggested that they
should, at a minimum, exceed .50, although .75 would
be preferred (Reise, 2012).

Goals

Given the foregoing discussion, the evidence provided
by Wechsler (2014b) regarding the reliability and

validity of the WISC-VCDN is open to question.
However, competent psychological practice demands
strong supportive evidence of reliability and validity
before any test, including the WISC-VCDN, can be
used to make high-stakes decisions about vulnerable
children (AERA, APA, & NCME, 2014).
Consequently, the factor structure of the WISC-VCDN

was exhaustively analyzed to identify an appropriate
scoring structure; and modern model-based estimates
of reliability for the WISC-VCDN were computed for a
variety of models.

Method

Participants

Participants were the WISC-VCDN standardization
sample of children aged 6 years–16 years of age.
Norming was conducted in 2013–2014 and included
880 children, stratified by age, sex, race and ethnicity,
parent education level, and geographic region. The
sample appeared to be representative of English-speak-
ing Canadian children (see Wechsler, 2014b for full
details).

Instruments

The WISC-VCDN is a norm-referenced, individually
administered intelligence battery appropriate for chil-
dren aged 6 through 16 years. According to the WISC-
VCDN manual, CHC theory as well as neurodevelop-
mental research and clinical utility were considered in
its development and these frameworks can be utilized
in the interpretation of WISC-VCDN scores.

The WISC-VCDN contains 10 primary and 6 second-
ary subtests (M = 10, SD = 3). The 5 CHC factor index
scores (M = 100, SD = 15) are computed from the 10
primary subtests: Similarities (SI) and Vocabulary (VO)
create the Verbal Comprehension Index (VCI); Block
Design (BD) and Visual Puzzles (VP) subtests create
the Visual Spatial Index (VS); Matrix Reasoning (MR)
and Figure Weights (FW) subtests create the Fluid
Reasoning Index (FR); Digit Span (DS) and Picture
Span (PS) subtests create the Working Memory Index
(WMI); and Coding (CD) and Symbol Search (SS)
subtests create the Processing Speed Index (PSI). The
Full Scale IQ (FSIQ; M = 100, SD = 15) is computed
using only 7 primary subtests: SI, VO, BD, MR, FW,
DS, and CD. The 6 secondary subtests are proposed to
load onto the same factors as the primary subtests:
Information (IN) and Comprehension (CO) on the
VC factor; Picture Concepts (PC) on the FR factor;
Arithmetic (AR) and Letter-Number Sequencing (LN)

INTERNATIONAL JOURNAL OF SCHOOL & EDUCATIONAL PSYCHOLOGY 257



on the WM factor; and Cancellation (CA) on the PS
factor.

Wechsler (2014b) provides considerable information
on the reliability and validity of WISC-VCDN scores.
For example, the average split-half reliability of the
FSIQ for the total standardization sample was .96,
whereas the average reliability of factor index scores
ranged from .88 (PSI) to .93 (FRI). The reliability of
subtest scores ranged from .81 (SS) to FW (.94).
Concurrent validity was supported by a comparison of
WISC-VCDN scores to other cognitive and achievement
tests. Convergent and discriminant validity was sup-
ported by studies of WISC-VCDN scores among clinical
groups. Factorial validity evidence was presented via a
series of CFA with the final structural model adhering
to a CHC framework (illustrated in Figure 1).

Analyses

Correlations, means, and standard deviations of the 16
WISC-VCDN primary and secondary subtests for the
total standardization sample were extracted from
Table 4.1 of Wechsler (2014b). All CFA were conducted
with Mplus 7.4 (Muthén & Muthén, 2015) from covar-
iance matrices using the maximum likelihood estima-
tor. Latent variable scales were identified by setting a
reference indicator in higher-order models and by set-
ting the variance of latent variables in bifactor models
(Brown, 2015). Parameter estimates were constrained
to equality in models with only two indicators per
factor (Gignac, 2007).

Models
The evaluated models were duplicates of those specified
by Wechsler (2014b, p. 50) and are identified in
Table 1. Bifactor variants of simple structure models
were also included to allow a comparison of alternative
models not tested by Wechsler (2014b). Global model
fit was evaluated with the chi-square likelihood ratio,

comparative fit index (CFA), Tucker-Lewis index (TLI),
standardized root mean square residual (SRMR), root
mean square error of approximation (RMSEA), and
Akaike’s information criterion (AIC). Given the large
sample size, it was expected that the chi-square like-
lihood test of exact fit would be rejected (Brown, 2015).
Accordingly, global approximate fit measures that con-
sider absolute (SRMR and RMSEA) and relative (CFI,
TLI) fit as well as parsimony (RMSEA, AIC) were relied
on to assess alternative models (Gignac, 2007; Loehlin
& Beaujean, 2017). Based on prior research and expert
suggestions (Hu & Bentler, 1999), good model fit
required TLI/CFI ≥ .95 as well as SRMR and
RMSEA ≤ .06. The AIC was used to compare the global
fit of alternative models, with the lowest AIC value
indicating the best model (Akaike, 1987). Meaningful
differences between well-fitting models were also eval-
uated using ΔCFI/TLI > .01, ΔRMSEA > .015 (Chen,
2007; Cheung & Rensvold, 2002; Gignac, 2007), and
ΔAIC > 10 (Burnham & Anderson, 2004). Given that
global fit indices are averages that can mask areas of
local misfit (McDonald & Ho, 2002) and potentially
invalidate a model, parameter estimates were scruti-
nized to ensure that they made statistical and substan-
tive sense (Brown, 2015).

Results

Global fit measures for all tested models are reported in
Table 2. Models with fewer than four group factors
failed to achieve good model fit, whereas models with
four and five group factors generally achieved good
global fit. For models with four group factors, the
bifactor version of the traditional Wechsler model was
superior (see Figure 3). For the models with five group
factors in a CHC structure, a relaxed bifactor version of
model 5a exhibited the best global fit (see Figure 4).
The initial bifactor version of model 5a was improper,
exhibiting a negative variance estimate for the FR

Table 1. Alternative structural models for the WISC-VCDN with 16 primary and secondary subtests.
Model Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

1 SI-VO-IN-CO-AR-DS-LN-
BD-VP-MR-FW-PC-PS-CD-SS-CA

2 SI-VO-IN-CO-AR-DS-LN BD-VP-MR-FW-PC-PS-CD-SS-CA – – –
3 SI-VO-IN-CO-AR-DS-LN BD-VP-MR-FW-PC-PS CD-SS-CA – –
4a SI-VO-IN-CO BD-VP-MR-FW-PC AR-DS-PS-LN CD-SS-CA –
4b SI-VO-IN-CO MR-FW-PC-AR-DS-PS-LN BD-VP CD-SS-CA –
4c SI-VO-IN-CO AR-BD-VP-MR-FW-PC AR-DS-PS-LN CD-SS-CA –
4d AR-SI-VO-IN-CO AR-BD-VP-MR-FW-PC AR-DS-PS-LN CD-SS-CA –
5a SI-VO-IN-CO BD-VP MR-FW-PC AR-DS-PS-LN CD-SS-CA
5b SI-VO-IN-CO BD-VP AR-MR-FW-PC DS-PS-LN CD-SS-CA
5c SI-VO-IN-CO BD-VP AR-MR-FW-PC AR-DS-PS-LN CD-SS-CA
5d AR-SI-VO-IN-CO BD-VP MR-FW-PC AR-DS-PS-LN CD-SS-CA
5e AR-SI-VO-IN-CO BD-VP AR-MR-FW-PC AR-DS-PS-LN CD-SS-CA

Note. SI = Similarities, VO = Vocabulary, IN = Information, CO = Comprehension, DS = Digit Span, LN = Letter-Number Sequencing, PS = Picture Span, AR =
Arithmetic, MR = Matrix Reasoning, FW = Figure Weights, PC = Picture Concepts, BD = Block Design, VP = Visual Puzzles, CD = Coding, SS = Symbol Search,
and CA = Cancellation. Complex loadings in each model underlined.

258 M. W. WATKINS ET AL.



factor. When the FR and VS factors were allowed to
correlate, the relaxed bifactor CHC model converged
appropriately.

Given that evaluating models exclusively on the basis of
global fit is insufficient, all models with good fit were also

scrutinized for size of parameters, statistical significance of
parameters, and interpretability (Bowen & Guo, 2012;
Brown, 2015; Kline, 2016). Three models manifested nega-
tive error variances (see Table 2), which are statistically
improper solutions that signal model misspecification

Table 2. Fit statistics for WISC-VCDN 16 primary and secondary subtests for the total standardization sample (N = 880).
Modela χ2 df CFI TLI SRMR RMSEA RMSEA 90% CI AIC

1 (g) 1026.8 104 .829 .803 .062 .100 .095–.106 65914
2 (V-P)b 902.2 103 .852 .828 .060 .094 .088–.100 65791
3 (V-P-PS) 635.3 101 .901 .883 .048 .078 .072–.083 65528
4a (VC-VS-WM-PS) 364.9 100 .951 .941 .039 .055 .049–.061 65260
4a Bifactor 214.8 88 .977 .968 .026 .040 .034–.047 65133
4b (VC-VS-WM-PS) 390.6 100 .946 .936 .039 .057 .052–.064 65285
4c (VC-VS-WM-PS) 325.8 99 .958 .949 .037 .051 .045–.057 65223
4d (VC-VS-WM-PS) 305.5 98 .962 .953 .036 .049 .043–.055 65204
5a (VC-VS-FR-WM-PS) 330.8 99 .957 .948 .038 .052 .046–.058 65228
5a Bifactorb Covariance matrix not positive definite. Negative variance estimate for Matrix Reasoning subtest.
5a Bifactor Modified 208.1 87 .978 .969 .025 .040 .033–.047 65129
5b (VC-VS-FR-WM-PS) Covariance matrix not positive definite. Negative variance estimate for FR factor.
5b Bifactorb 231.4 89 .974 .965 .028 .043 .036–.049 65148
5c (VC-VS-FR-WM-PS) Covariance matrix not positive definite. Negative variance estimate for FR factor.
5d (VC-VS-FR-WM-PS) 277.9 98 .967 .959 .035 .046 .039–.052 65177
5e (VC-VS-FR-WM-PS) 267.5 97 .968 .961 .035 .045 .038–.051 65168

Note. CFI = Comparative Fit Index, TLI = Tucker–Lewis Index, SRMR = Standardized Root Mean Square, RMSEA = Root Mean Square Error of Approximation,
AIC = Akaike’s Information Criterion, g = general intelligence, V = Verbal, P = Performance, PS = Processing Speed, VC = Verbal Comprehension, VS = Visual
Spatial, WM = Working Memory, FR = Fluid Reasoning. aModel numbers and letters correspond to those reported in the WISC–VCDN Manual (plus bifactor
variants of simple structure models that were added for this study) and are higher-order models (unless otherwise specified) when more than one first-
order factor was specified. bModels with only two indicators were constrained to equality for identification. Best fit indicators in bold. Indices not
meaningfully different (ΔCFI and ΔTLI < .01, ΔRMSEA > .015, ΔAIC ≤ 10) from best fit shaded.

Figure 3. Standardized bifactor structure with best fit among
the WISC-VCDN primary and secondary subtests.

Figure 4. Modified Model 5a bifactor structure of the WISC-
VCDN primary and secondary subtests.
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(McDonald, 2004). Although negative parameter values
can be fixed to a small positive value to achieve a solution,
“these remedial strategies are not recommended” (Brown,
2015, p. 167) because the resulting parameter estimates are
likely to be biased and “should not be trusted” (Kline, 2016,
p. 237). Consequently, those three offending models were
removed from further consideration.

All higher-order models with CHC structure and com-
plex loadings were marked by either improper solutions
(5b and 5c) or with FR loadings on the general intelligence
factor at such high levels (e.g., .99 formodels 5d and 5ewith
attendant nonsignificant variance estimates) as to indicate
that those factors were empirically redundant (Bowen &
Guo, 2012; Le et al., 2010). Among the bifactormodels with
five group factors, only a modification of the bifactor ver-
sion ofmodel 5a generated a proper solution (see Figure 4).
Thus, most models with five group factors exhibited good
global fit but were invalidated by parameters that were
statistically or substantively improper.

Based on global fit and simple structure, the bifactor
version ofmodel 4a was the superiormodel. All parameters
were statistically significant, none were out-of-range, and
all were substantively meaningful. However, it had two
weaknesses: (a) several subtests had weak loadings on
their group factor (AR at .09 ontoWMand three indicators
of VS ranging from .10 to .19) and (b) there was a sub-
stantial difference in loading strength between BD and VP
subtests (Md = .50) when compared to MR, FW, and PC
subtests (Md = .14). Thus, merging the FR and VS factors
revealed strain. Of note, the loading of AR on the WM
factor was low but statistically significant, whereas its load-
ing was nonsignificant when allowed to load onto VC or
PR instead of WM.

Given the parsimony afforded by its simple structure,
the bifactor Wechsler model illustrated in Figure 3 was
used for variance decomposition and computation of
model-based reliability coefficients. Sources of variance
from that model are presented in Table 3. The general
factor accounted for 33.8% of the total variance and
67.6% of the common variance. None of the group factors
accounted for substantial portions of variance. In fact, the
general factor accounted for more than twice the total and
common variance of all four group factors combined. Two
subtests, PC andCA, exhibited low communalities, indicat-
ing that they did not substantially contribute to any of the
factors. Only two subtests (IN andAR)were goodmeasures
of g, whereas three subtests (CD, SS, and CA) were poor
measures of g (Kaufman, 1994). CA was an especially poor
measure of g, loading at only .15. The other 11 subtests were
fair measures of g (i.e., loadings from 50 to .69). All
together, the general and group factors accounted for 50%
of the total variance leaving another 50% due to specific
variance and error.

The omega coefficients for the bifactor Wechsler model
are reported in Table 4. They indicate that the general, VC,
VS, and WM unit-weighted factor scores were reasonably
reliable (i.e., near the .80–.90 range) in the sense that they
reflected the systematic variance attributable to multiple
common factors. However, when the systematic variance
attributable to a single target factor of interest was indexed
via omega hierarchical coefficients, only the general factor
exhibited good reliability (ωh = .83), whereas the group
factor coefficients were low (ωhs = .15–.48), suggesting
that “much of the reliable variance of the subscale scores
can be attributable to the general factor, and not what is
unique to the group factors” (Rodriguez et al., 2016, p. 225).
For example, 85% of the variance of the unit-weighted VCI
score was attributable to both general and VC factors,
whereas only 23% of the variance of that same unit-
weighted VCI score was uniquely attributable to the VC
factor. Another perspective on WISC-VCDN reliability can
be obtained by computing omega coefficients for a CHC
higher-order model. Accordingly, the oblique results from
model 5a were transformed into an orthogonal solution
with the Schmid and Leiman (1957) method. Resulting
omega coefficients are presented in Table 4. Omega coeffi-
cients for the general, VC, and WM unit-weighted factor
scores were in the .80–.90 range but omega hierarchical
coefficients were all below .50.

These reliability estimates are hypothetical because
neither of these models represents the actual scoring
structure of the WISC-VCDN, which creates 5 CHC
factors from 10 primary subtests. That oblique struc-
ture was also transformed into an orthogonal solution
with the Schmid and Leiman (1957) method, with
resultant omega coefficients presented in Table 4.
Only the omega coefficient for the total score (.89)
and omega hierarchical coefficient for the total score
(.81) were sufficient for individual decisions. The
omega coefficients for the total score in this model
are also hypothetical because the WISC-VCDN FSIQ is
actually computed from only 7 subtests, not the 10
subtests needed to obtain factor index scores. When
the 3 extraneous subtests were omitted from the pri-
mary subtest model, estimates of ω and ωh were .85 and
.77, respectively. Thus, the shortened FSIQ was reduced
in reliability but still sufficiently precise for high-stakes
individual decisions.

Discussion

Standardization sample data from the WISC-VCDN

were analyzed to investigate reliability and structural
validity of its scores. Although Wechsler (2014b) pre-
ferred a complex higher-order CHC model, the new FR
factor in that model was problematic because it
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produced negative variance estimates, empirically
redundant factors, or low unique reliability estimates.
At best, it lacked discriminant validity (Le et al., 2010).
An alternative bifactor model with four group factors
and one general factor akin to the traditional Wechsler
structure was judged to be a good representation of the
structure of the WISC-VCDN. Alternatively, a bifactor
CHC model with correlated FR and VS factors exhib-
ited good fit but poor discriminant validity and con-
comitant interpretational confounding (Stromeyer
et al., 2015). These results are not surprising, given
that previous Wechsler scales as well as the U.S. version
of the WISC-V have been found consistent with similar
bifactor models (Canivez et al., 2016; Gignac &
Watkins, 2013; Gomez, Vance, & Watson, 2017;
Gustafsson & Undheim, 1996; Reynolds & Keith,
2017; Styck & Watkins, 2016; Watkins, 2006; Watkins,
Canivez, James, James, & Good, 2013).

The merits of bifactor versus higher-order models
have recently received considerable attention. Murray
and Johnson (2013) found that fit indices are biased in
favor of the bifactor model when there are unmodeled
complexities (e.g., minor loadings of indicators on

multiple factors). Morgan, Hodge, Wells, and Watkins
(2015) analyzed simulations of bifactor and higher-
order models and confirmed that both models exhib-
ited good model fit regardless of true structure. More
recently, Mansolf and Reise (2017) confirmed that
bifactor and higher-order models could not be distin-
guished by fit indices and admitted that there is, at
present, no technical solution to this dilemma.

Given that bifactor and higher-order models cannot be
confidently differentiated, it seems reasonable to require “a
parsimonious, substantively meaningful model that fits
observed data adequately well” (MacCallum & Austin,
2000, p. 218) that fulfills the purpose of measurement.
Murray and Johnson (2013) suggested that either model
would provide a good estimate of general intelligence but
“if ‘pure’measures of specific abilities are required then bi-
factor model factor scores should be preferred to those
from a higher-order model” (p. 420). This logic has been
endorsed by other measurement specialists (Brunner et al.,
2012; DeMars, 2013; Morin, Arens, Tran, & Caci, 2016;
Reise, 2012; Reise, Bonifay, & Haviland, 2013; Rodriguez
et al., 2016). Given that scores from the WISC-VCDN will
likely be used by psychologists to provide an estimate of

Table 3. Sources of variance for WISC-VCDN standardization sample (N = 880) according to a bifactor Wechsler model.
General Verbal Comprehension Visual Spatial Working Memory Processing Speed

Subtest b b2 b b2 b b2 b b2 b b2 h2 u2

Similarities .669 .448 .346 .120 .567 .433
Vocabulary .676 .457 .517 .267 .724 .276
Information .707 .500 .372 .138 .638 .362
Comprehension .554 .307 .350 .122 .429 .571
Block Design .550 .303 .476 .227 .529 .471
Visual Puzzles .611 .373 .506 .256 .629 .371
Matrix Reasoning .569 .324 .189 .036 .359 .641
Figure Weights .629 .396 .135 .018 .414 .586
Picture Concepts .529 .280 .103 .011 .290 .710
Arithmetic .724 .524 .093 .009 .533 .467
Digit Span .621 .386 .497 .247 .633 367
Picture Span .552 .305 .238 .057 .361 .639
Letter–Number Sequencing .621 .386 .455 .207 .593 .407
Coding .425 .181 .541 .293 .473 .527
Symbol Search .464 .215 .616 .379 .595 .405
Cancellation .150 .022 .454 .206 .229 .771
Total Variance .338 .040 .034 .032 .055 .500 .500
Common Variance .676 .081 .068 .065 .110

Note. b = standardized loading of subtest on factor; b2 = variance explained in the subtest; h2 = communality; u2 = uniqueness. g loadings ≥ .70 are
considered good (bold), from .50 to .69 are fair (italic), and < .50 are poor (Kaufman, 1994).

Table 4. Omega reliability coefficients for standardization sample (N = 880) from alternative models.
Bifactor Wechsler 16 Subtests CHC 16 Subtests 10 Primary Subtests

Factor Score ω/ωs ωh/ωhs ω/ωs ωh/ωhs ω/ωs ωh/ωhs

General .919 .830 .918 .839 .888 .805
Verbal Comprehension .850 .230 .848 .251 .773 .252
Working Memory .809 .167 .794 .178 .632 .180
Visual Spatial .788 .152 .737 .255 .736 .225
Fluid Reasoning – – .643 .036 .593 .042
Processing Speed .683 .483 .676 .452 .696 .449

Note. ω and ωs = omega of general and group factors, respectively; ωh and ωhs = omega hierarchical of general and group factors, respectively. Omega
coefficients should exceed ~.80 for decisions about individuals (Thorndike & Thorndike-Christ, 2010; Wasserman & Bracken, 2013). At a minimum, omega
hierarchical coefficients should exceed .50, although .75 would be preferred (Reise, 2012). Coefficients meeting minimum standards are in bold.
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general ability and to identify interventions based on cog-
nitive strengths and weaknesses as operationalized through
the factor index scores (Wechsler, 2014b), bifactor model
factor scores would be preferred (Murray & Johnson,
2013).

As predicted by Murray and Johnson (2013), all models
considered in this study produced reasonable estimates of
general ability. However, omega coefficients computed
from both bifactor and higher-order models demonstrated
that reliable variance of a WISC-VCDN factor index score
was primarily due to the general factor, not the group factor
(see Table 4). An additional consideration for clinical inter-
pretation is that approximately 50% of the total variance of
WISC-VCDN scores was due to error and specific variance.
Therefore, to interpret factor index scores “as representing
the precise measurement of some latent variable that is
unique or different from the general factor, clearly, is mis-
guided” (Rodriguez et al., 2016, p. 225).

“The ultimate responsibility for appropriate test use
and interpretation lies predominantly with the test
user” (AERA, APA, & NCME, 2014, p. 141). This
study demonstrated that psychologists can be reason-
ably confident in using the FSIQ score for clinical
decisions but should be extremely cautious in using
the factor index scores to make decisions about indivi-
duals. Factor index scores represent a blend of general
and group abilities as well as error and usually provide
little information beyond that provided by the general
factor (Beaujean, Parkin, & Parker, 2014; Canivez,
2016; Cucina & Howardson, 2017). Interpretation of
factor index scores should also be informed by external
validity evidence (AERA, APA, & NCME, 2014;
Hummel, 1998; Wasserman & Bracken, 2013).
DeMars (2013) predicted that differential validity
would be impaired by scores with low precision. That
prediction has been supported in many studies of exter-
nal validity (Carroll, 2000). For example, there is little
evidence to support the proposition that factor score
differences validly inform diagnosis or treatment
(Braden & Shaw, 2009; Burns, 2016; Kearns & Fuchs,
2013; Kranzler, Benson, et al., 2016; Kranzler, Floyd,
Benson, Zaboski, & Thibodaux, 2016; Reschly, 1997;
Restori, Gresham, & Cook, 2008). Likewise, multiple
studies have found little incremental validity for
Wechsler factor index scores beyond the FSIQ when
predicting academic achievement (Benson et al., 2016;
Canivez, 2013; Canivez, Watkins, James, Good, &
James, 2014; Glutting, Watkins, Konold, &
McDermott, 2006). Also, the predictive power of FSIQ
scores is not diminished by variability among factor
scores (Daniel, 2007; McGill, 2016; Watkins, Glutting,
& Lei, 2007). The cumulative weight of this reliability
and validity evidence suggests that psychologists should

focus their interpretive efforts at the general factor
level, and exercise extreme caution when using group
factor scores to make decision about individuals.
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