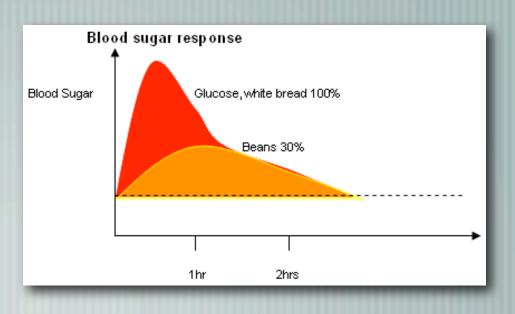
Exercise Nutrition and Body Composition


Read Chapters 18 & 23

Six major nutrients
 three are fuels

Carbohydrates

- **Primary function**
- Simple versus complex carbohydrates
- The glycemic index

Glycemic Index

TABLE 1. HIGH GLYCEMIC INDEX FOODS (GI>85)*

Angel Food Cake
Doughnut
Hard Candy
Bagel, White
Comflakes
TOTAL® Cereal
Raisin Bran Cereal
Shredded Wheat
Raisins
GRAPE-NUTS®
Commeal
Couscous
Corn Chips

Maltose

Millet

Croissant Waffles White Bread Glucose Com Bran Cereal Sucrose CRISPIX® Cereal Barley Flour Bread RICE KRISPIES* CHEERIOS* Cereal CREAM OF WHEAT® Ice Cream Molasses Soda Crackers Baked/Mashed Watermelon Potatoes Pancakes Pretzels Honey/Syrups Sport Drinks English Muffins

POP-TARTS* SPECIAL K® Cereal Rye Flour Bread CORN CHEX® Cereal

TABLE 2, MODERATE GLYCEMIC INDEX FOODS (GI=60-85)*

Sponge Cake Corn Tortilla Brown Rice Green Peas Cracked Barley White Rice (long-grain) Sweet Potato Brown Rice Mango

Pastry Pita Bread, White MULTI-BRAN CHEX® Cereal Buckwheat Orange/Grapefruit Juice Oatmeal, Cooked Basmati Rice Kiwifruit

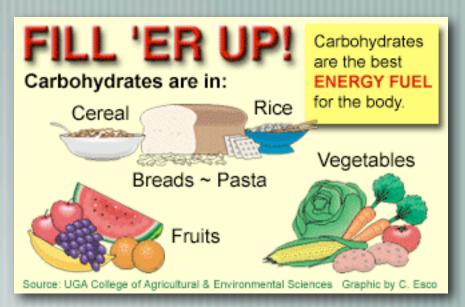
SNICKERS* Bar POWERBAR* Chocolate Oat Bran Cereal Bulgur Banana 7-Grain Bread Ice Cream, Low Fat Grapes Durum Spaghetti

Oat Bran Bread Linguine Sweet Corn 100% Whole Wheat Bread

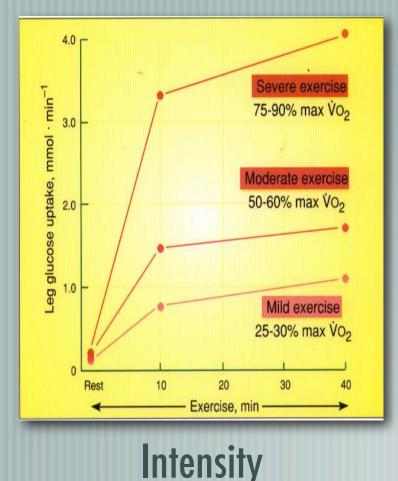
TABLE 3, LOW GLYCEMIC INDEX FOODS (GI <60)*

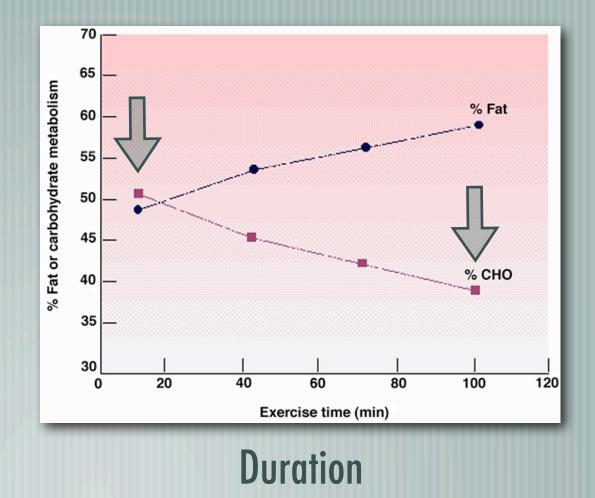
Barley Kernel Bread Milk (whole/skim) 9-Grain Bread Plums ALL-BRAN[®] Cereal

Barley, Boiled Yogurt (all types) Grapefruit/Oranges Beans (all types) Peanuts/Cashews

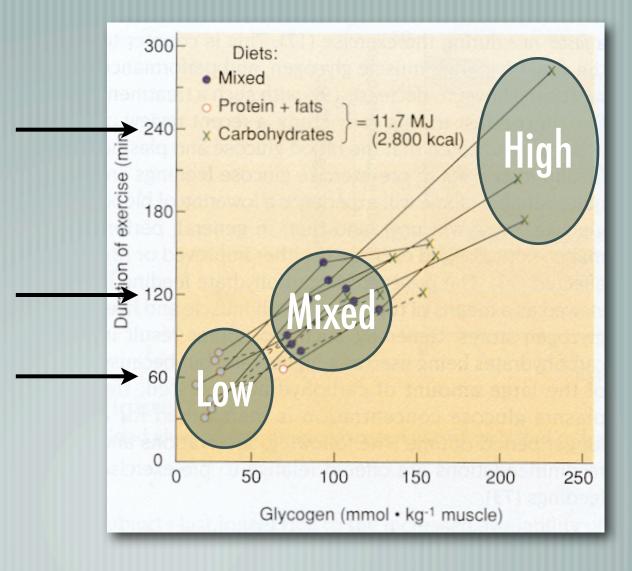

Rice Bran Apple (whole/juice) Peaches (fresh) Lentils Tomato Soup/Juice

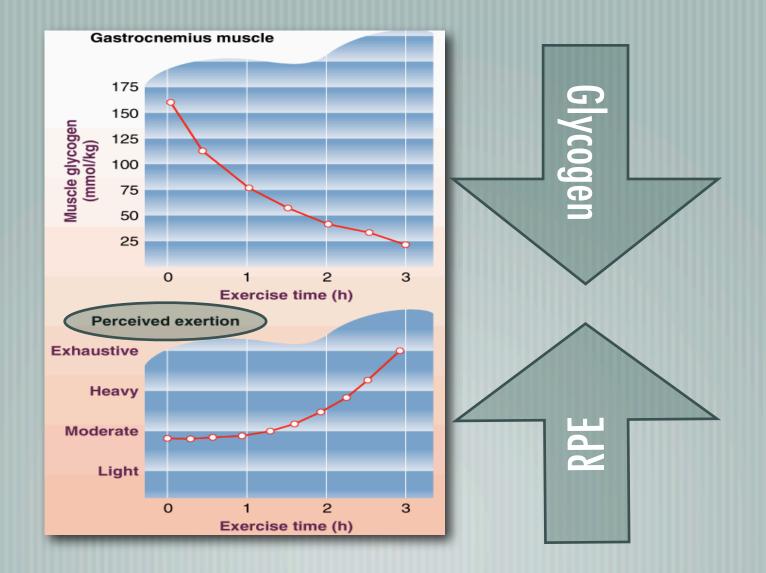
IRONMAN[™] Bar. Chocolate Apricots (dried) Pears (fresh) Brown Rice Chickpeas/ Hummus

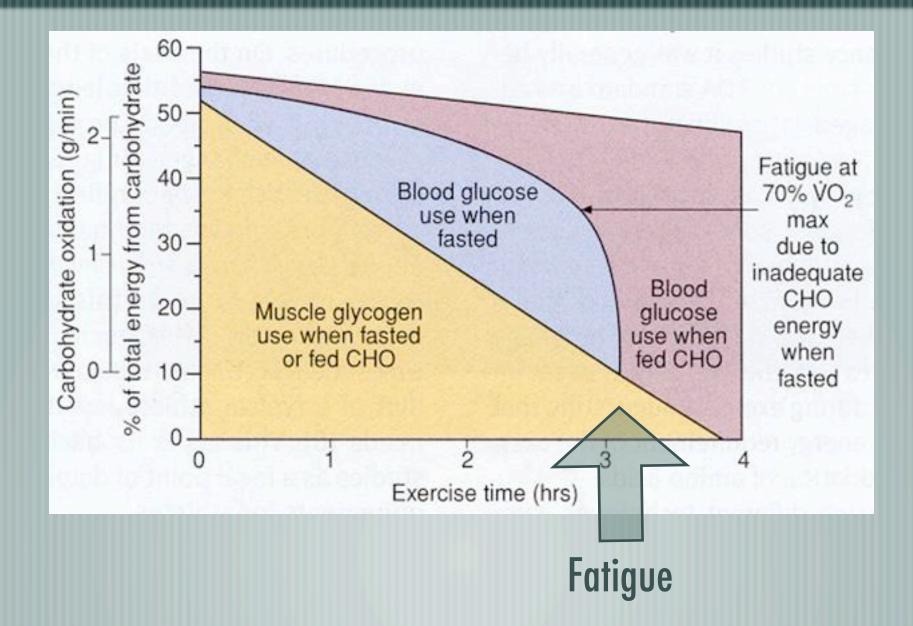

Carbohydrates

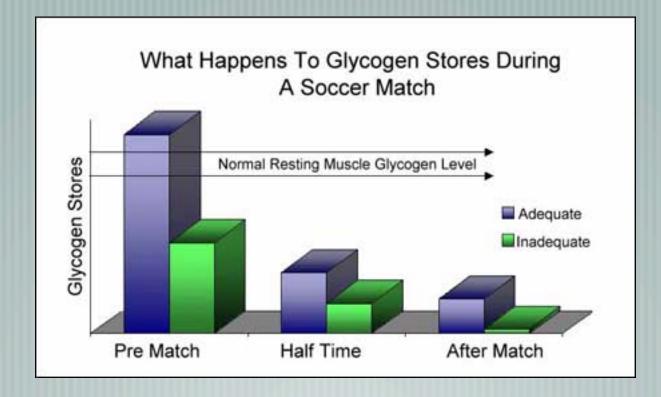

Percentage of total calories

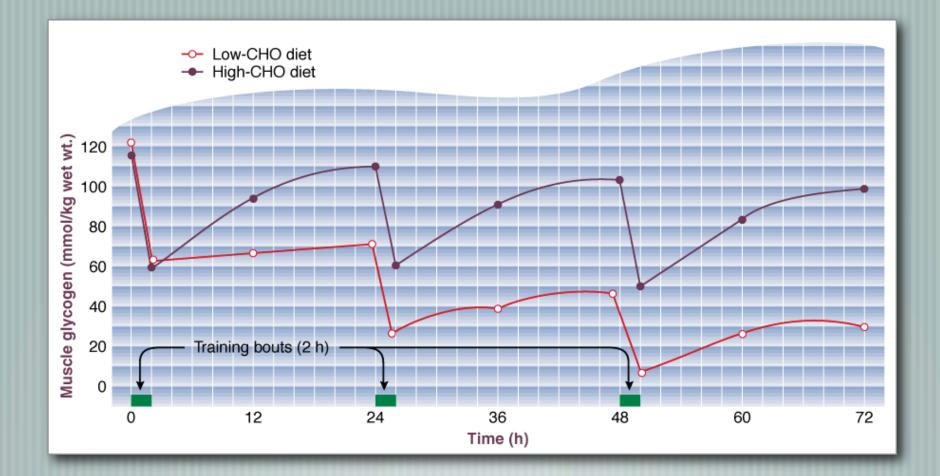
- Carbohydrates and health
- Carbohydrates and exercise

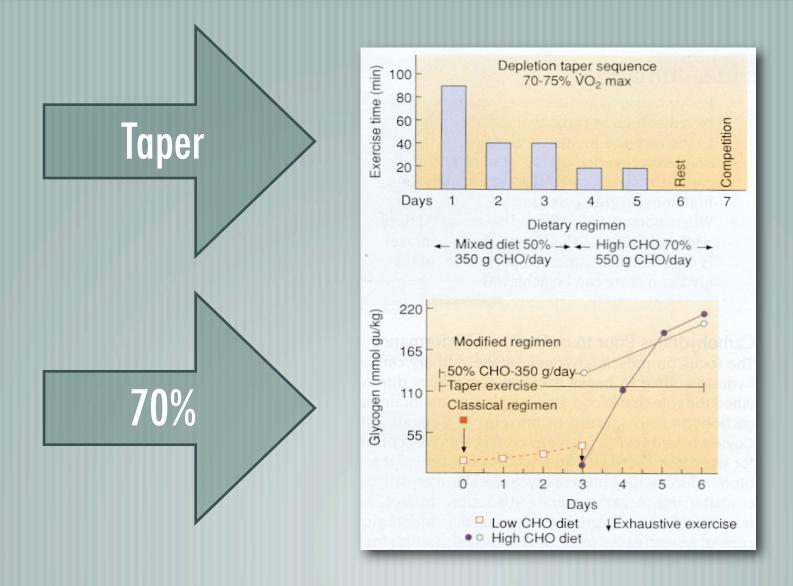

Carbohydrates & Exercise

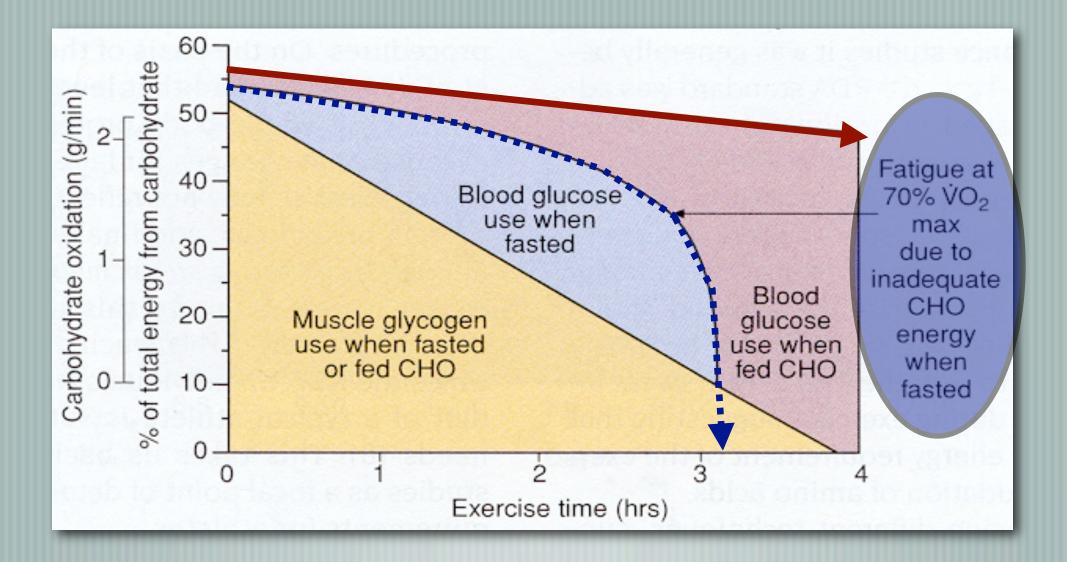





Carbohydrates and Exercise


Glycogen levels and exercise performance



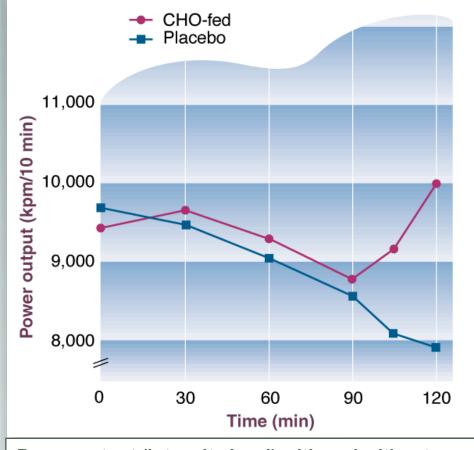


glycogen depletion can occur over time if the diet is low in carbohydrates

Carbohydrate Loading

Carbohydrates Before Exercise

Carbohydrates Before Exercise


Pre-exercise

- 1-5 grams / kg of carbohydrate 1 to 4 hours before exercise
- Easily digestible; liquid form if within one hour

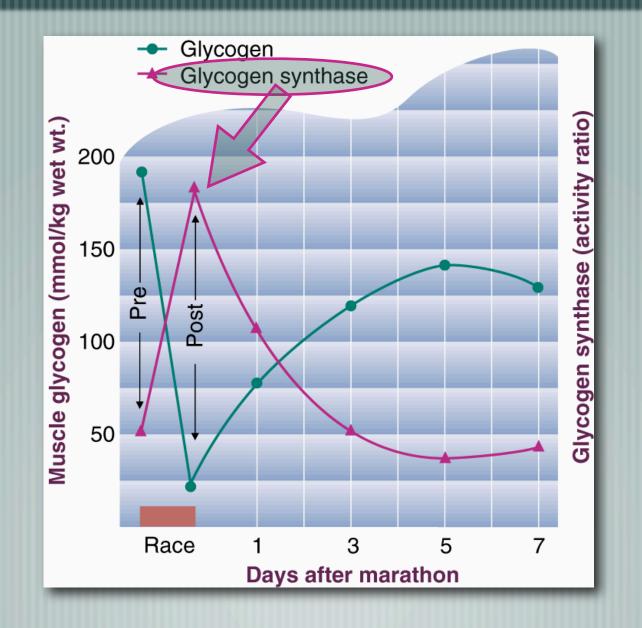
Carbohydrates During Exercise

- High glycemic index

- 30 minutes
 before fatigue
- 30-60 grams
 every hour

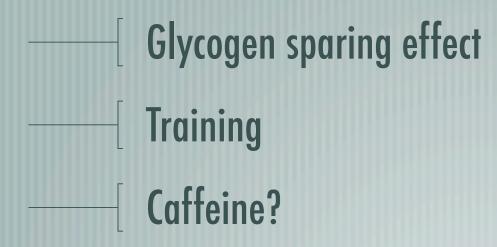
Power output (intensity level) with and without carbohydrates during exercise

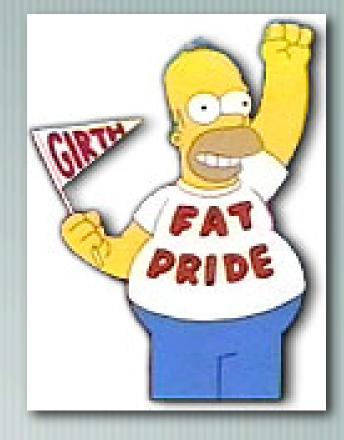
Gels and Energy Bars


Composition of Selected Sports Gels

Name	Energy (kcal)	CHO (g)	CHO (%)	Fat (g)	Fat (%)	Protein (g)	Protein (%)	Other
Clif Shots	96	24	100	0	0	0	0	Caffeine (some flavor s)
Gu	100	25	100	0	0	0	0	Caffeine
Power Gel	112	28	100	0	0	0	0	Ginseng, Kola nut, caffeine (some f a vors)
Squeezy	80	20	100	0	0	0	0	

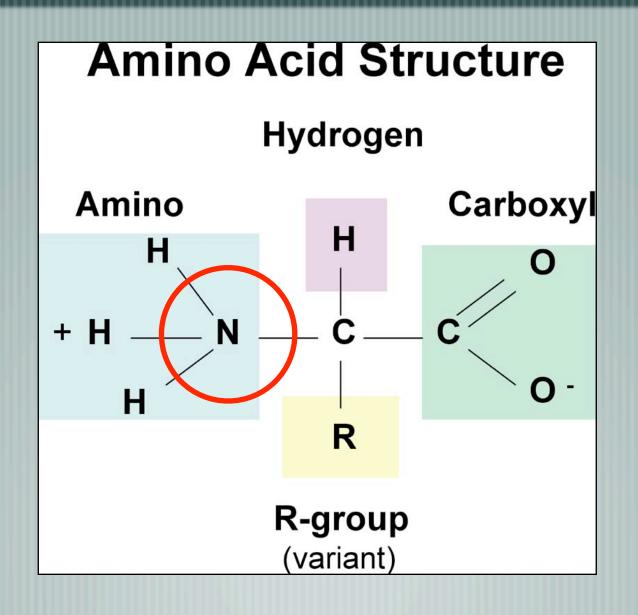
Composition of Selected Energy Bars


Name	Energy	CHO (g)	СНО (%)	Fat (g)	Fat (%)	Protein (g)	Protein (%)	Vitamins	Minerals
Balance Bar (almond brownie)	200	22	43	6	27	15	30	1	25
Clif Bar (peanut butter)	250	45	72	4	14	10	16	4	15
Clif Luna (chocolate pecan pie)	180	24	53	5	25	10	22 (soy)	1	22
EAS Myoplex Delux (chocolate)	340	43	51	7	19	24	28	2	26
Met-Rx Bar (fudge brownie)	320	48	60	2.5	7	27	43	2	22 + L-glutamine
Power Bar (chocolate)	225	42	75	2	8	10	18	3	20
Power Bar Essentials (chocolate)	180	20	62	4	20	10	22	3	21
Power Bar Protein Plus	290	15	21	8	25	32	44	1	21
PR-Bar (bavarian mint)	190	21	44	6	28	13	27	1	23
Snickers	280	35	50	14	45	4	6	1	0
Tiger Sports Bar	230	43	75	2	8	10	17	3	19


Carbohydrates After Exercise

1-2 g/kg

Fats and Exercise

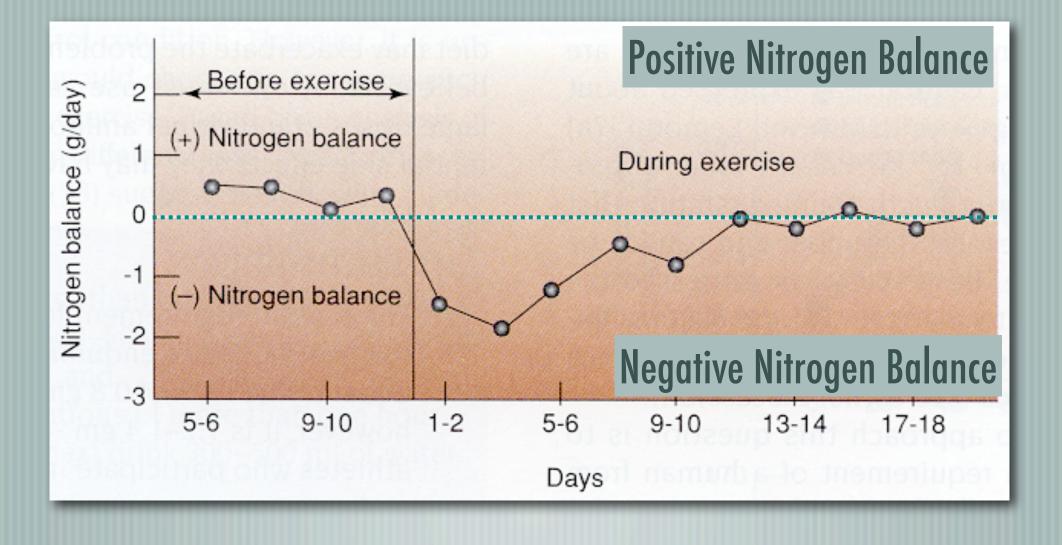


Protein

— Amino acids

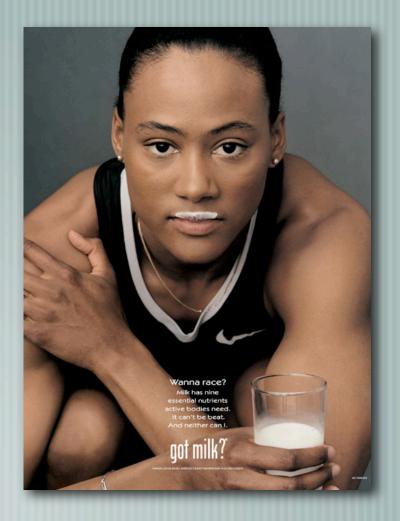
Nonessential	Essential
Alanine	Histidine
Arginine	Isoleucine
Asparagine	Leucine
Aspartate	Lysine
Cysteine	Methionine
Glutamate	Phenylalanine
Glutamine	Threonine
Glycine	Tyrptophan
Proline	Valine
Serine	
Tyrosine	

Protein


Protein

RDA

- 0.8 grams per kilogram
- Average protein intake is approx.
 1.5 grams/kg
- Complete v incomplete sources of protein


Nitrogen Balance

Protein & Exercise

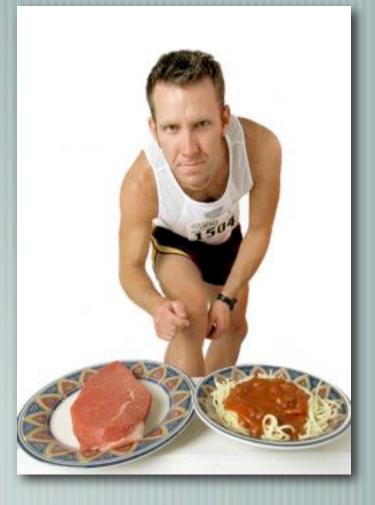
Do people who become physically active need to add more protein to their diet?

Do active individuals need to consume more than the RDA for protein?

Protein & Exercise

- The RDA is sufficient for light to moderately active individuals
 Endurance training
 - 1.2-1.4 grams per kg per day for high-intensity endurance exercise
 - **Resistance training**
 - [0.9 grams per kg per day for maintaining strength]
 - 1.4-1.8 grams per kg per day for increasing strength and lean body mass

Protein & Post-exercise

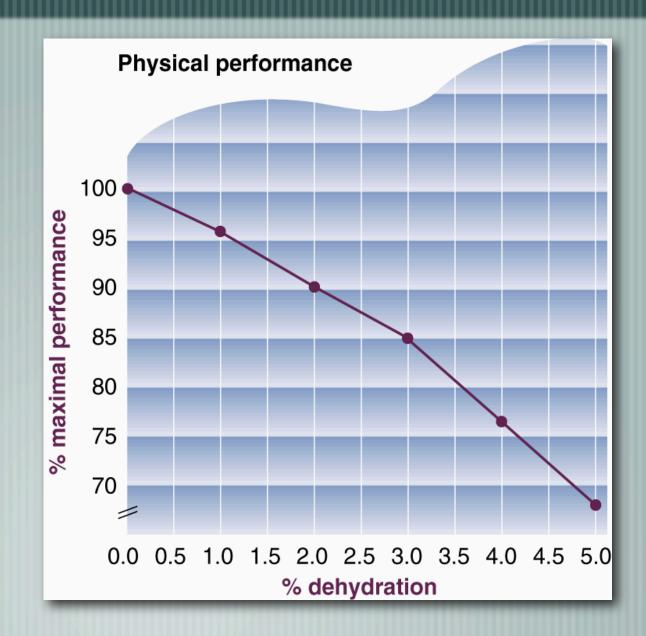

Recent research shows <u>protein</u> AND <u>carbohydrate</u> eaten within 30 minutes of a workout is effective in preparing athletes for the next workout.

4:1 ratio or 40 grams Carbs and 10 grams Protein

Repeated intake of small amounts for every one to two hours

Diets and Exercise

Do low carb, high protein diets affect exercise performance?


Water

-[50-75% of the body is water
-[Dehydration
-- Diets
-- Exercise

Water

Dehydration & performance

Dehydration Hinders Basketball Performance

05 Jul 2007

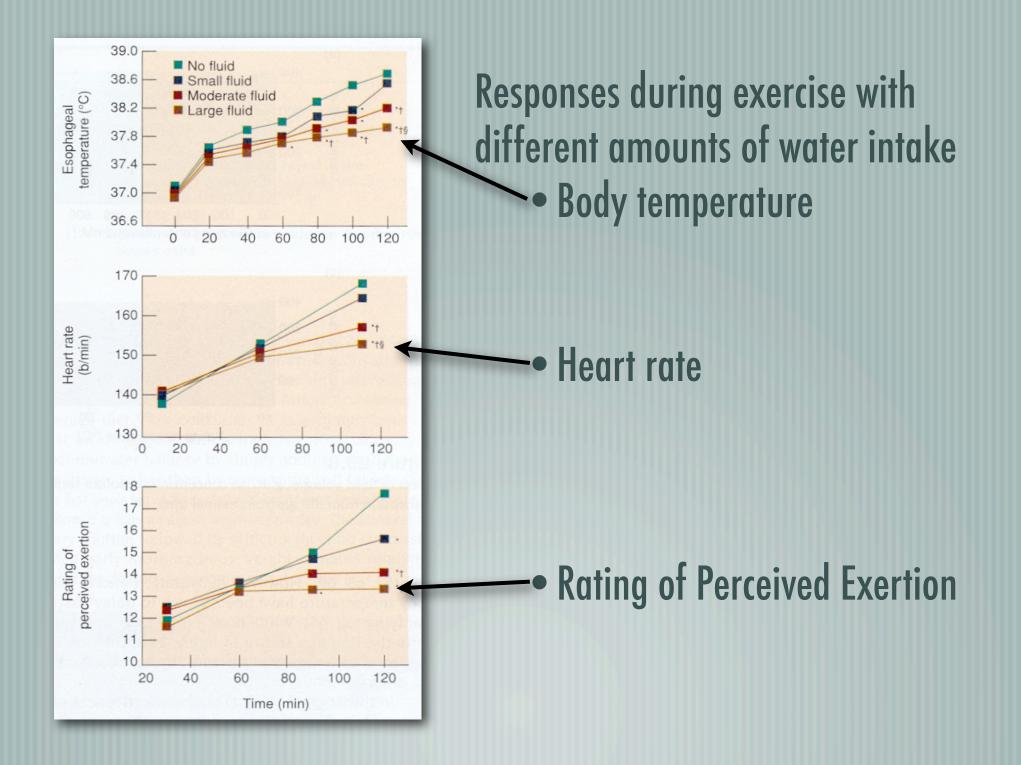
Dehydration is directly linked to a decline in performance on the basketball court, according to a study published recently in *Medicine* & *Science in Sports* & *Exercise*®, the official journal of the <u>American College of Sports Medicine</u> (ACSM).

The study examined 17 males aged 17-28, and tested performance during basketball drills at various levels of dehydration (up to 4 percent). As dehydration increased, skill performance decreased, indicating that proper hydration is necessary for peak performance on the court.

"The study supports the notion that players should be given adequate opportunities to hydrate themselves during play and practice," said Lindsay B. Baker, Ph.D. candidate, Pennsylvania State University, and lead author of the study.

Study participants completed three hours of interval treadmill walking, either with or without hydration. After a 70-minute rest period, subjects then performed a series of continuous basketball drills designed to simulate a fast-paced game. These included basketball-specific movement exercises (e.g., sprinting, defensive slides, and jumping) and shooting drills from various spots on the court (e.g., the free throw and three-point lines). Hydrated test subjects were given either flavored water or a carbohydrate-electrolyte sports drink.

The test results showed that:


- -- Subjects who were dehydrated by at least two percent consistently performed basketball movement exercises at slower rates.
- -- Dehydrated subjects failed to make as many shots as hydrated players.
- -- There was no difference in performance between hydrated subjects given flavored water or a carbohydrate-electrolyte drink.

Previous studies on NBA basketball players have shown significant lack of hydration, with an average of only about 40 percent of fluid losses from sweat replaced during practices or games.

"Many times the outcome of a basketball game is decided in the final minutes, when players tend to be the most dehydrated," Baker said. "It's crucial for basketball coaches at any level to be sure that their players are drinking adequate fluids during games and workouts to help prevent dehydration and attain peak performance."

In February 2007, ACSM issued the Position Stand "Exercise and Fluid Replacement," which provides insight on how to properly hydrate before, during, and after exercise. View the position stand <u>here</u>.

The American College of Sports Medicine is the largest sports medicine and exercise science organization in the world. More than 20,000 International, National, and Regional members are dedicated to advancing and integrating scientific research to provide educational and practical applications of exercise science and sports medicine.

Water Intake <u>Before</u> Exercise

For workouts less than 1 hour, drink 300-500 mL (10-17 oz) of...

- ...water or sports drink? Why?

For workouts great than 1 hour, drink 300-500 mL of...

...water or sports drink? Why?

Water Intake <u>During</u> Exercise

How much?

- 500-1000 mL/hr (17-34 ounces/hr)
- ...OR...
- 8-10 ounces every 15-20 minutes
- What to drink?

Sports Drinks

Name	Energy (kcal)	CHO (g)	CHO (%)	Na (mg)	K (mg)	Other
Accelerade	80	21	6.2	190	65	
Accelerade	00	۲ ک	0.2	190	03	5 g protein, Mg, vitamins C & E
All Sport	70	20	8.3	55	50	Ca, Cl, P, vitamins C, and five B vitamins
<u>Cytomax</u>	47.5	10	8	50	55	Vitamins A, C and chromium
Extran Thristquencher	45	11	5	61	49.5	n/a
Hydrade	55	10	4	91	77	Glycerol, vitamin C
Gatorade Endurance	50	14	6	198	93	Chloride, calcium, magnesium
Gatorade	50	14	6	110	30	Cl, P
GU20	50	13		240	40	(Complex carbohydrates)
Powerade	70	17	7	55	35	B vitamins
Powerbar Endurance	70	17		160	10	Mg and Cl
Propel	10	3	0.4	35	40	Vitamin C, E, niacin, B6, B12, pantothenic acid

AMERICAN COLLEGE of SPORTS MEDICINE®

Exercise and Fluid Replacement

POSITION STAND -

SUMMARY

This pronouncement was written for the American College of Sports Medicine by Michael N. Sawka, FACSM (chair); Louise M. Burke, FACSM, E. Randy Eichner, FACSM, Ronald J. Maughan, FACSM, Scott J. Montain, FACSM, Nina S. Stachenfeld, FACSM.

This Position Stand provides guidance on fluid replacement to sustain appropriate hydration of individuals performing physical activity. The goal of prehydrating is to start the activity euhydrated and with normal plasma electrolyte levels. Prehydrating with beverages, in addition to normal meals and fluid intake, should be initiated when needed at least several hours before the activity to enable fluid absorption and allow urine output to return to normal levels. The goal of drinking during exercise is to prevent excessive (>2% body weight loss from water deficit) dehydration and excessive changes in electrolyte balance to avert compromised performance. Because there is considerable variability in sweating rates and sweat electrolyte content between individuals, customized fluid replacement programs are recommended. Individual sweat rates can be estimated by measuring body weight before and after exercise. During exercise, consuming beverages containing electrolytes and carbohydrates can provide benefits over water alone under certain circumstances. After exercise, the goal is to replace any fluid electrolyte deficit. The speed with which rehydration is needed and the magnitude of fluid electrolyte deficits will determine if an aggressive replacement program is merited.

Hyponatremia

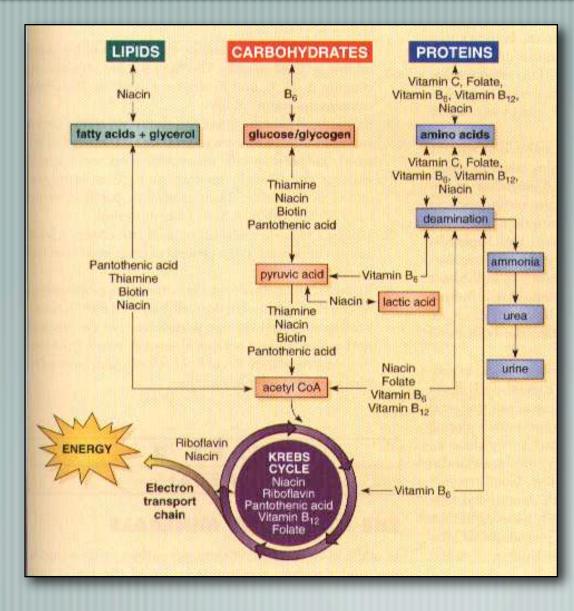
<u>Background</u> Hyponatremia has emerged as an important cause of race-related death and life-threatening illness among marathon runners. We studied a cohort of marathon runners to estimate the incidence of hyponatremia and to identify the principal risk factors.

<u>Methods</u> Participants in the 2002 Boston Marathon were recruited one or two days before the race. Subjects completed a survey describing demographic information and training history. After the race, runners provided a blood sample and completed a questionnaire detailing their fluid consumption and urine output during the race. Prerace and postrace weights were recorded. Multivariate regression analyses were performed to identify risk factors associated with hyponatremia.

<u>Results</u> Of 766 runners enrolled, 488 runners (64 percent) provided a usable blood sample at the finish line. Thirteen percent had hyponatremia (a serum sodium concentration of 135 mmol per liter or less); 0.6 percent had critical hyponatremia (120 mmol per liter or less). On univariate analyses, hyponatremia was associated with substantial weight gain, consumption of more than 3 liters of fluids during the race, consumption of fluids every mile, a racing time of >4:00 hours, female sex, and low body-mass index. On multivariate analysis, hyponatremia was associated with weight gain (odds ratio, 4.2; 95 percent confidence interval, 2.2 to 8.2), a racing time of >4:00 hours, 7.4; 95 percent confidence interval, 2.9 to 23.1), and body-mass-index extremes.

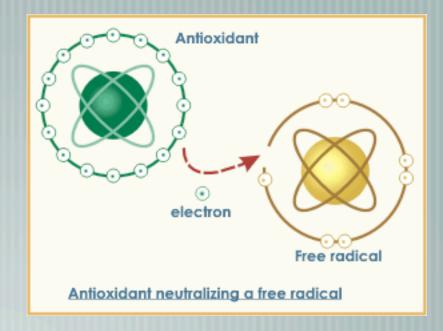
<u>Conclusions</u> Hyponatremia occurs in a substantial fraction of nonelite marathon runners and can be severe. Considerable weight gain while running, a long racing time, and body-mass-index extremes were associated with hyponatremia, whereas female sex, composition of fluids ingested, and use of nonsteroidal antiinflammatory drugs were not.

Vitamins


Fat soluble

Water soluble

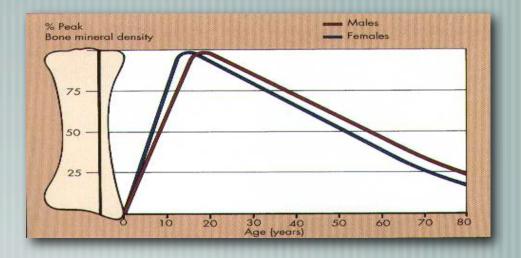
VITAMIN	FOOD SOURCES	HEALTH BENEFIT	DEFICIENCY
Fat Soluble			
A	Green vegetables, milk products, liver	Component of light-sensitive pigments in eye, epithelial tissue maintenance	Night blindness, permaner blindness, extremely dry ski
D	Deiry products, eggs, cod liver ol; utraviolet light	Calcium absorption, bone formation	Rickets (bone deformities
E	Margarine, seeds, green leafy vegetables	Protects fatty acids and cell membranes from oxidation	Possibly anem
ĸ	Green leafy vegetables	Blood clotting	Uncontrolled bleedin
Water Soluble			
B1	Organ meats, pork,	Carbohydrate metabolism, nerve and	Berlberi (weakened heart, edema
(Thiamine)	grains, legumes	heart function	nerve and muscle degeneration
82	Milk products, liver,	Energy metabolism	Eye irritation, inflammation an
(Riboflavin)	eggs, grains, legumes		breakdown of skin cell
Ba (Niacin or	Liver, lean meats,	Oxidation-reduction reactions in	Pellegra (skin and gastrointestin
Nicotinic Acid)	grains, legumes	cellular respiration	disorders; nerve inflammation mental disorders
85 (Pantothenic Acid)	Milk products, liver, eggs, grains, legumes	Energy metabolism	Faligue, loss of coordinatio
B6 (Pyridoxine)	Whole-grain cereals, vegetables, meats	Amino acid metabolism	Convulsions, tritability, kidne stone
9 12 (Cobalamin)	Red meats, eggs, dairy products	Nucleic acid production	Pernicious anemia, neurologica disorder
Biotin.	Meats, vegetables, legumes	Fat synthesis and amino acid metabolism	Depression, fatigue, nause
C (Ascorbic Acid)	Ctrus fruits, green leafy vegetables, tomatoes	Collagen formation in teeth, bone, and connective tissue of blood vessels; may help in resisting infection	Scurvy (breakdown of skin, bloo vessels, and teeth
Folic Acid	Whole-wheat foods, green vegetables, legumes	Nucleic acid metabolism	Anemia, diarrhe


B Vitamins

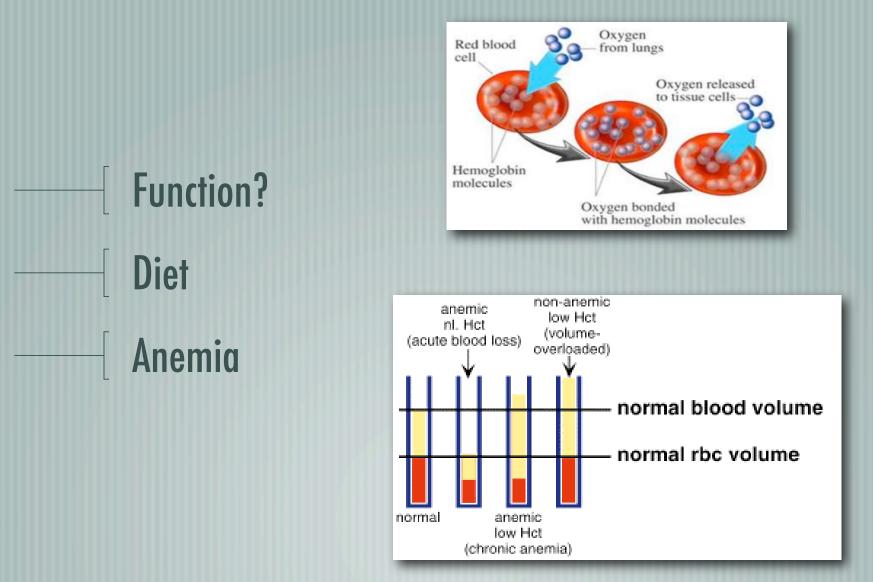
Vitamins DO NOT provide energy

Anti-Oxidants

Do active individuals <u>need</u> to take vitamin supplements?

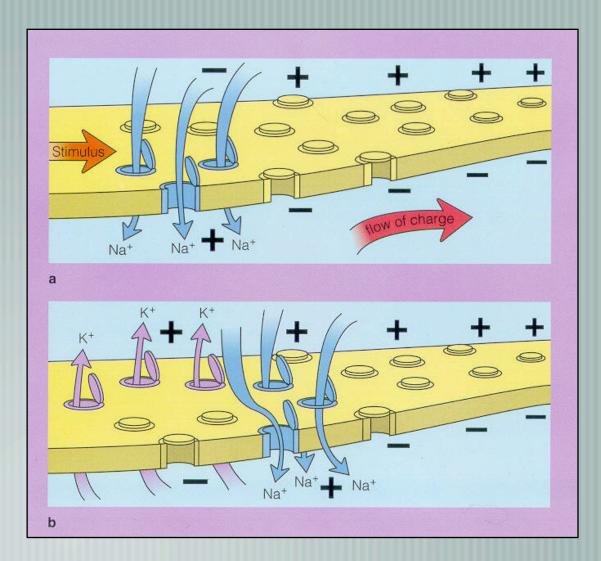


Minerals

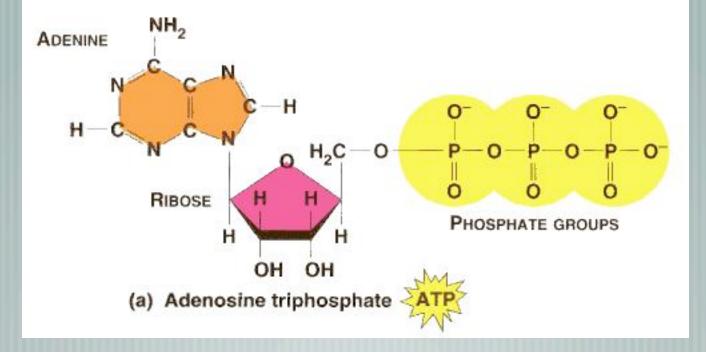

Major (Macro) minerals Calcium Sodium Potassium Chloride Phosphorus Magnesium Sulfur Trace (Micro) minerals Iron lodine Fluoride Zinc Selenium Copper Cobalt Chromium Manganese Molybdenum Arsenic Nickel Vanadium

Calcium

Stored Low calcium diet Healthy bones and exercise Women and estrogen



Iron



Electrolytes

Major electrolytes Function

Phosphorus

Nutrition and Cramps

electrolytes
dehydration
fatigue
other

Do active individuals <u>need</u> to take mineral supplements?