Arc-Length

P. Coulton *

The arc-length of the curve of a function can be estimated by choosing a partition of the interval $[a, b]$, say $\left\{x_{o}, x_{1}, \ldots, x_{n}\right\}$ and computing the length of the secant line for each subinterval. As an example consider the case given by

$L_{1}=\sqrt{\left(x_{1}-x_{o}\right)^{2}+\left(y_{1}-y_{o}\right)^{2}}$ and $L \approx L_{1}+L_{2}+L_{3}+L_{4}+L_{5}$.
In general we can write

$$
L \approx \sum_{i=1}^{n} \sqrt{\left(x_{i}-x_{i-1}\right)^{2}+\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)^{2}} .
$$

This simpiifies to

$$
L \approx \sum_{i=1}^{n} \sqrt{1+\left(\frac{\Delta f}{\Delta x}\right)^{2}} \quad \Delta x,
$$

where we have assumed that the subintervals are all of length $\Delta x=(b-a) / n$. Note that $\Delta f / \Delta x$ is the slope of the secant line and thus we may use the

[^0]mean value theorem to pass to the integral. So we define the arc-lentgh as
$$
L=\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x
$$

Let $f(x)=\sqrt{1-x^{2}}$, ie.e., the semi-circle. Then

$$
\sqrt{1+f^{\prime}(x)^{2}}=\sqrt{1+\frac{x^{2}}{1-x^{2}}}=\frac{1}{\sqrt{1-x^{2}}}
$$

The arc length integral is

$$
L=\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin (1)-\arcsin (-1)=\frac{\pi}{2}-\frac{-\pi}{2}=\pi
$$

which is the usual value for the arc-length of the semi-circle of radius 1 .
Department of Mathematics
Eastern Illinois University

[^0]: *Author, E-mail: prcoulton@eiu.edu

