Simpson's Rule

P. Coulton *

The midpoint rule involves the construction of a set of rectangles to estimate the area under a curve. The trapezoidal rule involves the construction of trapezoids to estimate the area under a curve. These are both linear methods for estimating area. It is natural to ask, can we use a parabola (quadratic methods) to give an estimate of the area i.e. Simpson's rule.

The purpose of using a quadratic approximation is to take advantage of estimating the integral using as few points as necessary in the case that the function has relatively large concavity .

An example of the trapezoidal and parabolic estimates.
We need to find the area under a parabola given by the three points

$$
(0, f(0)) ;(1, f(1)) ;(2, f(2))
$$

The parabola is

$$
p(x)=f(0) \frac{(x-1)(x-2)}{2}-f(1) x(x-2)+f(2) \frac{x(x-1)}{2}
$$

[^0]or
$$
p(x)=\frac{1}{2}\left((f(0)-2 f(1)+f(2)) x^{2}+(-3 f(0)+4 f(1)-f(2)) x+2 f(0)\right)
$$

The integral gives

$$
\int_{0}^{2} p(x) d x=\frac{1}{3}(f(0)+4 f(1)+f(2))
$$

If we rescale taking

$$
(0, f(0)) ;(h, f(h)) ;(2 h, f(2 h))
$$

the the integral gives

$$
\int_{0}^{2 h} p(x) d x=\frac{h}{3}(f(0)+4 f(h)+f(2 h)) .
$$

Patching together several parabolic arcs gives Simpson's Rule

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x \approx \frac{h}{3} \sum_{i=1}^{n}\left(f\left(x_{o}\right)+4\left(x_{1}\right)+2 f\left(x_{2}\right)+\right. 4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+ \\
& \ldots+4 f\left(x_{2 n-1}+f\left(x_{2 n}\right)\right)
\end{aligned}
$$

Department of Mathematics
Eastern Illinois University

[^0]: *Author, E-mail: prcoulton@eiu.edu

