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Abstract

We investigate the properties of mirrored objects in space that are invisible
for some fixed direction. By invisible in a fixed direction we mean that light
rays parallel to the axis of the object will bend around the object and exit the
object along the same straight line that they first stuck the object. We call
these objects axially invisible objects. The advantage of such directionally
invisible objects is that they would be difficult to detect and they would be
resistant to light ray pressure in the specified axial direction.
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1. Introduction

We say that an object in Rn is axially invisible in a given axial direction
(say, the y-axis direction) if every ray moving in that direction can be diverted
around the object so that the ray exits the object in the same direction and
along the same line that it entered the object except possibly on a set of
measure zero.
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Figure 1. An example of a parabolic lens system.

We say that an object constructed from opposing parabolic curves is a
parabolic lens system with respect to the y-axis if the opposing parabolic
curves have a common focus at (0, t) and the set of all rays parallel to the
y-axis that strike the upper parabolic curve pass through the focus and strike
the lower parabolic curve so that the resultant outgoing ray is also parallel
to the y-axis.

Proofs in the article are devoted primarily to the planar case; however,
these proofs are easily adapted to higher dimensional cases. We begin with
the following lemma. The proof is left to the reader.

Lemma 1. The equation of a concave up parabola with focus at (0, p+ r) is
given by

4py = x2 + 4pr, or y =
x2

4p
+ r,

and the equation of a concave down parabola with focus at (0, p+ r) is given
by

4py = −x2 + 4p(2p+ r), or y = −x
2

4p
+ 2p+ r.

2. Parabolic System Objects PS2.

We define a mirrored parabolic system PS2(a, b) in the plane as the object
determined by a set of parabolic mirrors on the surfaces of the given regions:

A+ = {(x, y) |x ∈ [−a,−2b] ∪ [2b, a], −x
2

4b
+ b ≤ y ≤ x2

4b
− b}

and

A− = {(x, y) |x ∈ [−a,−2b] ∪ [2b, a],−x
2

4b
+ 3b− a2

2b
≤ y ≤ x2

4b
+ b− a2

2b
}.
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Figure 2. Parabolic lens in series giving PS2(a, b).

Proposition 2. The object PS2(a, b) is axially invisible with respect to the
y-axis direction. In particular, if a ray from infinity parallel to the y-axis
strikes the object PS2(a, b) on the parabolic curves at a point A = (xo, yo),
then the ray is reflected so that the ray exits parallel to the y-axis at a point
D = (xo,−yo + 2b− a2

2b
).

Proof: Observe that the focus of the upper system is at F1 = (0, 0) and
the focus of the lower system is at F2 = (0, 2b − a2/(2b)). We say that the
object is in series when one lens system is connected to the other lens system
in a consecutive fashion such that first lens system ends at the two points
(−a, b− a2/(4b2)) and (a, b− a2/(4b)) and the second lens system begins at
these points as shown in Figure 2.

Since the parabolic curve acts as a mirror, we know that a ray parallel
to the y-axis which strikes the upper parabolic curve x2/4b− b at the point
A = (xo, yo), will pass through the focus of the parabola at F1. The ray will
then strike the point B = (−xo,−yo) which is on the lower parabolic curve
y = −x2/4b+ b.

Since the ray has passed through the focus, F1, of this parabola at (0, 0),
it follows that the ray will be parallel to the y-axis after reflection. Now if the
two objects are placed in series, that is, the ray passes first through the A+

lens and then through the A− lens, it will necessarily follow that the ray will
pass through the second focus at F2 = (0, 2b − a2/2b). This ray will strike
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the lower parabolic mirror at a distance yo below the lower focus. In other
words, the ray will strike the point D = (xo,−yo +2b−a2/2b). By symmetry,
the ray will exit parallel to the y-axis in the same line as the initial ray. This
completes the proof. .

Corollary 3. Consider the object PS2(a, b) rotated about its axis of symme-
try obtaining a solid of revolution denoted by PS3(a, b). Then PS3(a, b) is
invisible with respect to the y-axis direction.

Proof: Since the new object PS3(a, b) is the volume of revolution of PS2(a, b)
the same tracing arguments hold as in the proof of Proposition 2.This com-
pletes the proof. .

Figure 3. Two cutaway parabolic mirrors in series.

Consider the regions defined by

B+ = {(x, y) | x ∈ [−a,−c] ∪ [c, a], −x
2

2b
+ b ≤ y ≤ x2

2b
− b},

and B− a copy of the same object translated downward in the y-axis direction
by 2b− a2/2b. We will refer to this object as PS2(a, b, c).

Proposition 4. The cutaway parabolic object PS2(a, b, c) is invisible with
respect to the y-axis direction and the volume of revolution PS3(a, b, c) ob-
tained by rotating the object around the axis of symmetry (say, the y-axis) is
invisible with respect to the y-axis direction.

Proof: Observe that if c = 2b, then the object is the same as the one
given in Proposition 2. The same argument holds as given in Proposition 2
except that the choice for (xo, yo) is restricted to to smaller set. The same
tracing arguments work as in Proposition 2 for the given points xo, yo) on
the parabolic surfaces. This completes the proof. .

4



We observe that the three-dimensional objects obtained by the volumes
of revolution for PS2(a, b) and PS2(a, b, c) when rotated about the x = a
axis (equivalently, the x = −a axis) are also axially invisible with respect to
the y-axis direction.

3. Combination Parabolic System Objects

Here we turn our attention to components of invisible objects which are
not necessarily symmetric with respect to reflection through the x-axis. Con-
sider the lens system LS2 defined by the region in the plane determined by

C = {(x, y) | x ∈ [−c,−r] ∪ [r, c], −x
2

4b
+ b ≤ y ≤ x2

4a
− a},

where r = 2
√
ab < c and a ≤ b. Note that the two parabolas have the same

focus but different focal lengths when a < b. The distance from the vertex
of the parabola to the focus for the upper lens is a an the distance from the
vertex to the focus of the lower lens is b.

Figure 4. A pair of lenses in series.

Proposition 5 If a ray parallel to the y-axis strikes the upper mirror of LS2

at a point (xo, yo), then the ray passes through the focus at (0, 0) and strikes
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the lower mirror at a point (x1, y1) satisfying

y1 = −2by2o
x2o

(
1 +

√
1 + x2o/y

2
o

)
, and x1 =

xoy1
yo

,

such that the exiting ray is parallel to the y-axis.

Proof: It is straight forward to check that the focus is at (0, 0) for both
parabolic curves. Next, observe that the reflected ray moves along the line
given by

x =
xo
yo
y =

4axoy

x2o − 4a2
, where yo =

x2o − 4a2

4a
.

Substituting into the equation for the lower parabolic curve gives

y = − x2o
4y2ob

y2 + b.

Simplifying this relation gives the equation for y1 under the observation that
the value of y1 < 0. Using the equation of the line gives

x1 = −2byo
xo

(
1 +

√
1 + x2o/y

2
o

)
Finally we wish to show that every ray parallel to the y-axis that strikes the
top parabolic curve will reflect through the focus and strike at some point
of the bottom parabolic mirror. To accomplish this, we must show that the
value of y when x = c for the bottom parabolic curve is less than the absolute
value of y when x = c is on the top parabolic curve.

If this is the case, then a straight line from the lowest point on the lower
parabola through the focus will strike some point on the upper parabola. We
let y+ denote the top value of the upper parabola and y− denote the absolute
value of y for the lowest point of the lower parabola, then

y+ =
c2 − 4a2

4a
, and y− =

c2 − 4b2

4b
.

We wish to show that y+ > y− when a < b and 2
√
ab < 2b ≤ c. Let

τ >
√
b/a and substitute c = 2τ

√
ab, then

y+ = τ 2b− a, and y− = τ 2a− b.

Observe that y+ > y− when τ =
√
b/a and differentiation with respect to τ

shows that y+ grows faster than y−. This completes the result. .
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If one place the parabolic mirror with the larger focal length on the top,
then the of the bottom lens is wider than the width of the top of the lens.
On the other hand, it is possible to construct a new lens with the curves used
in Proposition 2 on either side of the original lens. In this way an axially
invisible object can be constructed using the lens from Proposition 5.

Figure 4. An example of an odd symmetry lens embedded in an axially
invisible object.

It is apparent that from this type of lens system it is possible to construct
three dimensional lens system objects using rotation about an axis of sym-
metry.

4. Elliptic Combination Lenses.

We consider the two mirrored curves

y =
b

2a2
x2 − a2

2b
, with 0 ≤ y ≤ p.

and

y = −
√
b2 − a2 ± b

a

√
a2 − x2 with − 2

√
b2 − a2 ≤ y ≤ 0,

Proposition 6 Assume that an object is constructed from the parabolic and
elliptic curves given above. A ray parallel to the y-axis direction that strikes
the upper parabolic curve passes through the focus at (0, 0) and strikes the
lower elliptic surface at some point (x1, y1) with y1 < 0 and after reflecting
passes through the lower focus of the ellipse at y = −2

√
b2 − a2.

Proof: We need only show that the two curves have a common focus at
(0, 0) and that the two curves meet at (±a2/2b, 0). Observe that the focus
of the parabola is a distance 2a2/b above the vertex which is at (0, a2/2b).
Therefore, the focus of the parabolic curve is at (0, 0).
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The focus of the elliptic curve is at a distance of
√
b2 − a2 above the

midpoint of the ellipse which is given by the defining equation at the point
(0,−

√
b2 − a2). We conclude that the two conic sections have a common

focus at (0, 0). When y = 0 in the parabolic equation, we obtain x = ±a2/b.
Now oberve that replacing x = ±a2/b in the elliptic equation gives y = 0.
We conclude that the two conic sections meet at the desired points. This
completes the proof. .

Proposition 7 Consider a lens combination constructed from two identical
combinations lenses as defined in Proposition 6 with the two elliptic curves
in series and the two parabolic curves at the ends such that the width of
the parabolic curves is greater than or equal to 2a. Then a pair of these
combination lenses is axially invisible with respect to the y-axis direction.

Figure 5. A combination lens is shown on its side with the elliptic curves in
series in the interior.

Proof: A ray parallel to the y-axis hits the parabolic curve at some point
(xo, yo). The ray then passes through the foci at (0, 0) and at (0,−2

√
b2 − a2).

The ray then hits the second parabolic mirror at (−xo,−2
√
b2 − a2−yo) and

is parallel to the y-axis. If a second lens is placed in series with this lens,
then the ray will be reflected until it hits a point on the last parabolic curve
with x coordinate xo. The ray will then be reflected and return to the line of
its original trajectory. Therfeore the combination of lenses is axially invisible
with respect to the y-axis direction, which is what we wished to prove. .
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