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Abstract

One of the more interesting properties of chaotic dynamics is the way in
which the system appears to mimic a stochastic process. A stochastic process
is by nature an indeterminate system. On the other hand, a properly designed
chaotic system can produce the same apparent outcomes as a stochastic
system. This may induce to the untrained eye the very same effect as one
would expect in stochastic system, when in fact, these chaotic dynamical
systems are strictly deterministic.

In this paper, we consider a simple model of a chaotic discrete dynamical
system and show that the chaotic dynamics is a result of the fact that the
initial conditions for the system are in fact a parameter space for a stochastic
system sample space.
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1. Introduction

Recall that a stochastic process is an experiment which can be performed
repeatedly without end and which has the same set of outcomes for each
experiment with a fixed probability distribution for the outcomes of each
experiment. We will assume that the outcomes of each experiment are finite
and that the probability distribution is uniform.

A simple example of this process is given by a game spinner with three
regions labeled A,B, and C. When spun the pointer is assumed to land in
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each of the regions with an equal probability of 1/3. If S = {A,B,C}, then
the sample space for a countably infinite set of trials is

U = {< X1, X2, X3, . . . > | Xi ∈ S, ∀ i ∈ Z+}.

Now consider any continuous positive surjective function f : [0, 1] → [0, 1]
and define the iterative sequence

x1 = x1, xi+1 = f(xi).

The sequence generated by the starting point, or seed value x1, is illustrated
in Figure 1.
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Figure 1. Tracing the iteration method.

As an example, consider the surjective function f : [0, 1] → [0, 1] as in
Figure 1 defined by:

f3(x) =


3x : x ∈ [0, 1/3]

−3x+ 2 : x ∈ (1/3, 2/3)
3x− 2 : x ∈ [2/3, 1]

We have split the domain in Figure 2 into three basic regions in order to
study the sequence of iterations of the function. The reduction is as follows:
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• if xi ∈ [0, 1/3], then Xi = A;

• if xi ∈ (1/3, 2/3), then Xi = B;

• if xi ∈ [2/3, 1], then Xi = C.

We call x1 the seed of the sequence. We observe that for each x1 ∈ [0, 1] the
iteratively defined sequence is an element of U .

Now observe that if x1 is in [0, 1/9] then x1 corresponds to A and x2
corresponds to A. on the other hand, if x1 is in the interval (1/9, 2/9) then
x1 corresponds to A and x2 corresponds to B. If x1 is in the interval [2/9, 1/3],
then x1 corresponds to A and x2 corresponds to C, and so on.

A B C C B A CBA

A C B B A A B C C B A A B C C B A A B CC A A CCBB

A CB

x
1

Figure 2. An example of Lemma 1 for x1 →< A,C,A, ... >.

An example of the first few steps in this dynamical system process is given
in Figures 1 and 2. The dotted line in Figure 1 shows the iteration process
for a specific seed value. Once x1 is chosen, then the sequence is determined
and can be obtained from Figure 2 by drawing a vertical line through the
chart at x1 and reading off the corresponding interval symbols in the chart.
We will refer to this sequence as the symbol sequence.

Procedure 1. The symbol sequence for the seed value x1 ∈ [0, 1] for the
surjective function f3(x) is given by the symbols read in order for the vertical
line through x1 as shown in the chart of Figure 2 at x1.

Concept: From the form of the function f3(x) it is clear that it is possible
to go from any state, say A, to any other state in the next step. For a point
chosen at random, the probability of a transition from a given state to any
other state is exactly 1/3. From the arguments above, we will assume that
the symbol sequence outlined, in the first n steps of the iteration, corresponds
to the chart given.



4

Now suppose that in the n-th step we are in the interval corresponding
to the state A. There is a transition from this state to the next state with
probability 1/3 for each outcome. This means that we can divide the current
interval into three parts. According to the rule of the chart, the transition
from an interval labeled A to the next interval symbol will be either in the
form A|B|C or C|B|A. Now, observe that each time we visit a region la-
beled B the order of the interval division, i.e., the form A|B|C or C|B|A, is
reversed.

The rule for the choice of label then is determined by the number of
times the symbol B has appeared in the sequence up to the n-th step. If
the number is even then the symbols in the interval division division to the
next step looks like A|B|C and if the number is odd, then it will appear
as C|B|A. This corresponds to the transitions that occur in the function
iteration. This is precisely the rule in the self replicating form of the chart
in Figure 2. Therefore the label regions that the vertical line passes through
will correspond to the regions visited in proper order for the symbol sequence
starting at x1.

Proposition 2. The symbol sequence at x1 ∈ [0, 1] gives a method for ob-
taining the ternary expansion of the decimal numbers x ∈ [0, 1].

Proof: Given a symbol sequence < X1, X2, X3, . . . > constructed from the
symbols A,B and C using the seed x1 in f3(x), we construct the ternary, or
base 3, expansion using the following rules:

• If Xn = B then take an = 1;

• If Xn = A and there are an even number of B’s in the sequence up to
Xn−1, then take an = 0 else take an = 2;

• If Xn = C and there are an even number of B’s in the sequence up to
Xn−1, then take an = 2 else take an = 0.

We claim that the value of x1 ∈ [0, 1] satisfies

x1 =
∑ an

3n
.

It is only necessary to observe that the chart for the dynamical system corre-
sponds to the Cantor set with respect to the interval associated to B in each
case. The only difference being that in the ternary expansion there is never
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a reversal of the digits 0|1|2 in the interval decomposition. This anomaly is
rectified by the rule for computing the ternary expansion by counting the
number of reverses in the symbol sequence.

A B C C B A CBA

0 1

01
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2 2 2
C
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100

2
x
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Figure 3. The symbol sequence compared to the ternary expansion.

Proposition 3. The symbol sequence resulting from the function f3(x) has
a period three cycle, which implies that it is chaotic.

Proof: To see that the system is chaotic, recall that period three implies
chaos[2, p. 986] and observe the following period three cycle:

f3(
2

7
) =

6

7
; f3(

6

7
) =

4

7
; f3(

4

7
) =

2

7
.

The symbol sequence associated to x1 = 2/7 is periodic and of the form

< A,C,B,A,C,B, . . . >

which is a period three cycle. This completes the proof.

We let
x1 '< A,C,B,A,C,B, . . . >

denote the relation between the seed x1 and its symbol sequence. Now
consider the dynamical systems given by function iterations obtained from
fk : [0, 1]→ [0, 1] defined by

fn(x) =



nx : for x ∈ [0, 1/n]
−n(x− 2/n) : for x ∈ (1/n, 2/n]
n(x− 2/n) : for x ∈ (2/n, 3/n]

. . . : . . .
−n(x− 1) : for x ∈ ((n− 1)/n, 1]
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for n even and

fn(x) =



nx : for x ∈ [0, 1/n]
−n(x− 2/n) : for x ∈ (1/n, 2/n]
n(x− 2/n) : for x ∈ (2/n, 3/n]

. . . : . . .
n(x− (n− 1)/n) : for x ∈ ((n− 1)/n, 1]

for n odd.

...

...

A A Ao 1 2
... An−1

A
0

... A
n−1

...A n−1 A
0 ...A

0
... A

n−1

0 1 2 ... n−1 0 1 2 ... n−10 1 2 ... n−1

Fig. 5. The base n dynamical system on the unit interval.

For the binary, i.e. base 2, system a period three cycle is given by the seed
value x = 2/9. To see this, observe that

f2(2/9) = 4/9; f2(4/9) = 8/9; f2(8/9) = 2/9.

This implies that 2/9 has the symbolic sequence

2

9
'< A,A,B,A,A,B, . . . > .

If we apply the following rule

1. Replace A by 0 if an even number of B’s precede it otherwise replace
the A with 1;
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2. Replace B by 1 if an even number of B’s precede it otherwise replace
the B with 0;

then the expansion < A,A,B,A,A,B, . . . > gives the binary representation
of 2/9, namely

(0.00111000111000111 . . .).

We note that this dynamical system is related to the Chebyshev-von Neuman-
Ulam map

fC(x) = 4x(1− x).

It should now be evident that if f(x) is a mapping from [0, 1] with n linear
switchbacks functions such that each piecewise linear monotonic function is
onto [0, 1], then dynamical system is related to the base n-expansion of the
numbers on the interval [0, 1]. The map fn(x) is thus a model for the behavior
of such a dynamical system.

Proposition 4. The seed value of x1 = 2/(nk + 1) induces a period k-cycle
for the map fn(x).

Consider the itinerary given by

< A,A,A, . . . , A,B, . . . >,

with k − 1 consecutive symbols A and one B such that the string repeats
indefinitely. The rule for evaluating the seed number x1 is that the expansion
will repeat after 2k terms and

1. If an even number of B’s appear before an A in the m-th position, then
the expansion term in the m-th position is 0/nm, else it is (n− 1)/nm.

2. If an even number of B’s appear before a B in the m-th position, then
the expansion term in the m-th position is 1/nm, else it is (n− 2)/nm.

Therefore, the expansion of the first 2k-terms is

1/nk + (n− 1)/nk+1 + . . .+ (n− 1)/n2k−1 + (n− 2)/n2k =

(nk + nk−1(n− 1) + nk−2(n− 1) . . .+ n(n− 1) + n− 2)/n2k =

(nk + nk − nk−1 + nk−1 − . . .+ n2 − n+ n− 2)/n2k =

(2nk − 2)/n2k = 2(nk − 1)/n2k.
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Taking account of the entire symbol sequence gives rise to a geometric series
of the form

α = 2(nk − 1)
∞∑
j=1

( 1

n2k

)j
.

Applying the geometric sequence formula gives

α =
2

nk + 1
.

This completes the proof.

In particular, we observe that x = 2/(n3 + 1) gives a period three cycle
for fn(x). Of course, for large n there are many period three cycles.

We remark that the seed value 2/(nk−1 + nk−2 . . .+ n+ 1) also produces
a period k-cycle. To obtain this, one applies the rule to the symbol sequence
< A,A, . . . , A,B,B, . . . >, where A appears k − 2 times.

Proposition 5. If k is prime, then the number of unique k-cycles for fn(x)
is given by is (nk − n)/k.

Proof: We can see from the above exposition that any sequence of k
symbols repeated indefinitely will correspond to a point which is k-periodic.
In other words, fk

n(x1) = x1 with respect to the dynamical system defined
by iterates of fn(x). Suppose that there is a point which corresponds to a
sequence of k symbols which is repeated indefinitely and the corresponding
point x1 is of period r < k, where the period r is assumed to be minimal in
this sense. The symbol sequence will be of the form

< X1, X2, X3, . . . , Xk, . . . > where Xi ∈ {A1, A2, A3, . . . , An},

and where the bar indicates repetition. The first iterate is f(x1) = x2 such
that x2 '< X2, X3, X4 . . . , X1, . . . > . Therefore

xr '< Xr, Xr+1, Xr+2, . . . , Xr+k, . . . >,

where Xi+k = Xi for each i ∈ Z+. If r = 1 then we have that Xi = Ai for
each i = 1, 2, ..., k which is a constant for the iteration. If 1 < r < k, then
since r does not divide k we have pr < k < (p + 1)r for some p ∈ Z+. It
follows from this that xr is k-periodic, since it can have no shorter period.

Now observe that the total number of symbol sequences that satisfy our
definition is nk but n such sequences have period 1 and so should not be
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counted. Of the remaining symbol sequences each is of period k but each
such sequence includes k different staring points. Therefore, the number of
unique sequences is (nk − n)/k.
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