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Abstract

We consider the case of a convex polygon in the plane and give a general
formula for the time to escape moving in a straight line when the direction
for escape is given. Using this formula we can obtain the expectation for
escape for the choice of a random direction by integrating over the set of
possible directions. Special cases will be considered and we will show how to
simulate the problem of expectation using maple.
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1. Segment Strategies in the Plane

We consider the following problem:

• You awake in a forest (a convex polygon K) whose geometry is com-
pletely known to you, but you remember nothing about how you came
to be in the forest.

• Let σ denote a straight line strategy for escape.

• Given an escape strategy, σ, we shall call the average time for escape
(where the time is identified with arc-length) the expectation time.
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Figure 1. An escape strategy from P in direction θ.

Thus we have that the expectation is

E(σ) =
1

2πA(K)

∫ 2π

0

∫
K
t(x, y, θ) dA dθ,

where A(K) is the area of the polygon (or region) and t(x, y) is the distance
from (x, y) to the boundary of the region in the direction determined by
θ. Let δ denote the diameter of the convex set K. We naturally have the
following:

Lemma 1.1 Assume that the diameter of K is 1 and the expectation for
escape from K for some fixed strategy is

E = α, where α ∈ R.

Then for K̂ ∼ K geometrically similar to K with diameter δ̂ we have Ê = αδ̂.

Now consider a fixed point (x, y) with chord length c(x,y) in the direc-
tion determined by θ. Then c(x, y)/2 is the average escape time for the set
of points that lie along this chord. Therefore, In order to find the expected
escape time for a given fixed direction determined by some θ we must inte-
grate c2(h, θ) for each position of height in K along the ζ-axis perpendicular
to the angle θ. Let E(σ, θ) denote the expectation for escaping with respect
to the fixed direction determined by θ, then

E(σ, θ) =
1

2A(K)

∫ h(θ)

o
c2(ζ, θ)dζ.

where ζ(θ) denotes an axis in the plane that is perpendicular to the chords
determined by the angle θ.
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Figure 2. Construction of the ζ-axis.

Hence we can write

E(σ) =
1

2πA(K)

∫ π

0

∫ h(θ)

0
c2(ζ, θ) dζ dθ,

where h(θ) is the altitude of the projection of K onto the ζ-axis.

Proposition 1.2 The expectation time for a circle of diameter δ using the
segment strategy is

E(σ) =
4δ

3π
.

c(    )

Figure 3. Construction of the ζ-axis.

Proof: Since the circle is symmetric with respect to the origin we have

E(σ) =
4

πδ2

∫ δ/2

0

(
2

√
δ2

4
− ζ2

)2
dζ =

4

πδ2

∫ δ/2

0
(δ2 − 4ζ2) dζ =

4δ

3π

≈ 0.424δ.
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2. Convex Regular Polygons

Lemma 2.1 The expectation to escape in a given direction θ from a trapezoid
with boundary lines parallel to θ is given by

E(σ, θ) =
(c21 + c1c2 + c22)h

6A(K)

where c1 is the length of one of the parallel sides and c2 is the length of the
opposite side and where h is the distance between the parallel sides.
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Figure 4. An escape from the trapezoid in a direction parallel to ζ.

Proof: Observe that the chord lengths increase in a linear fashion between
points at height 0 and h. The chord length at height t is

c(ζ) = c1 +
c2 − c1
h

ζ

The contribution of the chord integral in this region is∫ h

o
c2(ζ)dζ =

1

3
(c21 + c1c2 + c22)h.

Theorem The expectation to escape from an n sided regular polygon with
side a is given by

E(σ) =
2 tan(π/n)

3a2π

∫ π/n

o
c21h1+

n−2∑
j=2

(c2j−1+cj−1cj+c
2
j)(hj−hj−1)

+c2n−2(hn−1 − hn−2)
)
dθ,

where the heights are given as in Figure 5 below.
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Figure 5. Heights and chords as a function of θ.

Proof: We observe that the summation over the chord values follows directly
from the trapezoidal formula. We need only calculate the value of A(K).

a cot(       )/2

a/2
π/n

/nπ

Figure 6. The area of the triangle associated to side of length a.

The area is given by

A(K) = a2n
cot(π/n)

4
.

Plugging this into the formula and taking into account that we must complete
n identical integrals from 0 to π/n gives the result.

As an example consider the case of the square of side length a. Then

co = 0, c1 = a sec(θ), h1 = a sin(θ), c2 = a sec(θ), h2 = a cos(θ)− a sin(θ)

which applied to our theorem leads to the integral formula

E(σ) =
2

3πa2

∫ π/4

o
a3(3 sec(θ)− sec(θ) tan(θ))dθ,

=
2a

3π

(
3 ln(1 +

√
2) + 1−

√
2
)
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Now consider the case of the rectangle with sides a and b. Applying the
theorem for side a1 = a gives the integral formula∫ arctan(b/a)

o

∫ h(θ)

o
c2(t, θ)dtdθ =

∫ arctan(b/a)

o

(
− a2b

3
sec(θ) tan(θ) + a3 sec(θ)

)
dθ,

which leads to the formula

E(σ) =
a+ b

3π

(
3 ln(1 +

√
2) + 1−

√
2
)
.

As a further example consider the case of the regular pentagon with side
length a. We assume that for some angle θ, 0 ≤ θ ≤ π/5, and diameter δ we
have

h1 = a sin(θ); c1 = a cos(θ) + a sin(θ) cot(
2π

5
− θ); h2 − h1 = δ sin(

π

5
− θ);

c2 = δ(cos(
π

5
− θ) + sin(

π

5
− θ) cot(

π

10
− θ))
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Figure 7. An escape from the pentagon in a given direction determined by θ.

Therefore, using symmetry and doubling the bottom half of the computation
we have

E(σ) =
4 tan(π/5)

3a2π

∫ π/5

o
c21h1 + (c21 + c1c2 + c22)(h2 − h1)dθ.
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To complete the the computation, we will need to solve the following inte-
grals:∫ π/5

o
c21h1dθ =

a3
∫ π/5

o
sin(θ)

(
(cos(θ) + sin(

π

10
) sin(θ) cos(θ) + cos(

π

10
) sin2(θ)

)2
dθ,

∫ π/5

o
c21(h2−h1)dθ =

a2δ
∫ π/5

o
sin(

π

5
− θ)

(
(cos(θ) + sin(

π

10
) sin(θ) cos(θ) + cos(

π

10
) sin2(θ)

)2
dθ.

The last two integrals are similar and involve trigonometric functions of cos(θ)
and sin(θ) with combined powers of 5 or less. The solution for the integrals
in the case of the the general regular polygon is not significantly different
since they also involve triangles and trapezoids of the same kind.

3. The Case of the General Convex Polygon.

We begin with the case of the general triangle.

Theorem The expectation for exiting a triangle K is

E(σ) =
3∑
i=1

ai sin
2(αi)

6πA(K)

( ∫ αi−1

o
a2i−1 sec(

π

2
− αi−1 − θ)dθ

+
∫ π

2
−αi+1

o
a2i+1 sec(

π

2
− αi+1 − θ)dθ

)
,

=
3∑
i=1

ai sin
2(αi)

6πA(K)

[
a2i−1 ln

(
(sec + tan)(

π

2
− αi−1)

)
+a2i+1 ln

(
(sec + tan)(

π

2
− αi+1)

)]
,

where the sides are of length ai and the interior angle between ai−1 and ai is
αi and a3 = ao.
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Figure 9. An escape from a polygon in a given direction determined by θ.

We note that the integral above is obtained by a substitution in the case of
the equilateral triangle since the actual integrand is

sin(θ) sec2(
π

6
− θ).

As an application to the theorem consider the case of the equilateral triangle
such that that a1 = a2 = a3 = 1 then the formula gives

E(σ) =
3/4

π
√

3/4
ln(

2√
3
− 1√

3
)

=

√
3 ln(3)

2π
≈ 0.31.

Theorem The expectation to escape from an n sided polygon is given by

E(σ) =
1

6πA(K)

n∑
j=1

∫ θj

o

(
c21h1 +

n−3∑
i=1

(c2i + cici+1 + c2i+1)(hi+1 − hi)

+c2n−2(hn−1 − hn−2)
)
dθ,

where
∑
j θj = π with the standard assumptions on the heights hi and the

chords ci which depend on θ.
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Figure 9. An escape from a polygon in a given direction determined by θ.

A similar formula will hold for any convex polygon whic can be decomposed
as triangles and trapezoids for each angle θ. I would like to thank Steve
Finch and John Wetzel for suggesting this problem to me.
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