# Expection Time for Escape from a Convex Polygon 

P. Coulton


#### Abstract

We consider the case of a convex polygon in the plane and give a general formula for the time to escape moving in a straight line when the direction for escape is given. Using this formula we can obtain the expectation for escape for the choice of a random direction by integrating over the set of possible directions. Special cases will be considered and we will show how to simulate the problem of expectation using maple.


AMS classification:
Keywords: geometric probability, expectation, polygon, set diameter

## 1. Segment Strategies in the Plane

We consider the following problem:

- You awake in a forest (a convex polygon $K$ ) whose geometry is completely known to you, but you remember nothing about how you came to be in the forest.
- Let $\sigma$ denote a straight line strategy for escape.
- Given an escape strategy, $\sigma$, we shall call the average time for escape (where the time is identified with arc-length) the expectation time.


Figure 1. An escape strategy from $P$ in direction $\theta$.
Thus we have that the expectation is

$$
E(\sigma)=\frac{1}{2 \pi A(K)} \int_{0}^{2 \pi} \int_{K} t(x, y, \theta) d A d \theta
$$

where $A(K)$ is the area of the polygon (or region) and $t(x, y)$ is the distance from $(x, y)$ to the boundary of the region in the direction determined by $\theta$. Let $\delta$ denote the diameter of the convex set $K$. We naturally have the following:

Lemma 1.1 Assume that the diameter of $K$ is 1 and the expectation for escape from $K$ for some fixed strategy is

$$
E=\alpha, \text { where } \alpha \in \mathbf{R} .
$$

Then for $\hat{K} \sim K$ geometrically similar to $K$ with diameter $\hat{\delta}$ we have $\hat{E}=\alpha \hat{\delta}$.
Now consider a fixed point $(x, y)$ with chord length $\mathrm{c}(\mathrm{x}, \mathrm{y})$ in the direction determined by $\theta$. Then $c(x, y) / 2$ is the average escape time for the set of points that lie along this chord. Therefore, In order to find the expected escape time for a given fixed direction determined by some $\theta$ we must integrate $c^{2}(h, \theta)$ for each position of height in $K$ along the $\zeta$-axis perpendicular to the angle $\theta$. Let $E(\sigma, \theta)$ denote the expectation for escaping with respect to the fixed direction determined by $\theta$, then

$$
E(\sigma, \theta)=\frac{1}{2 A(K)} \int_{o}^{h(\theta)} c^{2}(\zeta, \theta) d \zeta .
$$

where $\zeta(\theta)$ denotes an axis in the plane that is perpendicular to the chords determined by the angle $\theta$.


Figure 2. Construction of the $\zeta$-axis.

Hence we can write

$$
E(\sigma)=\frac{1}{2 \pi A(K)} \int_{0}^{\pi} \int_{0}^{h(\theta)} c^{2}(\zeta, \theta) d \zeta d \theta
$$

where $h(\theta)$ is the altitude of the projection of $K$ onto the $\zeta$-axis.
Proposition 1.2 The expectation time for a circle of diameter $\delta$ using the segment strategy is

$$
E(\sigma)=\frac{4 \delta}{3 \pi}
$$



Figure 3. Construction of the $\zeta$-axis.
Proof: Since the circle is symmetric with respect to the origin we have

$$
\begin{gathered}
E(\sigma)=\frac{4}{\pi \delta^{2}} \int_{0}^{\delta / 2}\left(2 \sqrt{\frac{\delta^{2}}{4}-\zeta^{2}}\right)^{2} d \zeta=\frac{4}{\pi \delta^{2}} \int_{0}^{\delta / 2}\left(\delta^{2}-4 \zeta^{2}\right) d \zeta=\frac{4 \delta}{3 \pi} \\
\approx 0.424 \delta
\end{gathered}
$$

## 2. Convex Regular Polygons

Lemma 2.1 The expectation to escape in a given direction $\theta$ from a trapezoid with boundary lines parallel to $\theta$ is given by

$$
E(\sigma, \theta)=\frac{\left(c_{1}^{2}+c_{1} c_{2}+c_{2}^{2}\right) h}{6 A(K)}
$$

where $c_{1}$ is the length of one of the parallel sides and $c_{2}$ is the length of the opposite side and where $h$ is the distance between the parallel sides.


Figure 4. An escape from the trapezoid in a direction parallel to $\zeta$.
Proof: Observe that the chord lengths increase in a linear fashion between points at height 0 and $h$. The chord length at height $t$ is

$$
c(\zeta)=c_{1}+\frac{c_{2}-c_{1}}{h} \zeta
$$

The contribution of the chord integral in this region is

$$
\int_{o}^{h} c^{2}(\zeta) d \zeta=\frac{1}{3}\left(c_{1}^{2}+c_{1} c_{2}+c_{2}^{2}\right) h
$$

Theorem The expectation to escape from an $n$ sided regular polygon with side $a$ is given by

$$
\begin{gathered}
E(\sigma)=\frac{2 \tan (\pi / n)}{3 a^{2} \pi} \int_{o}^{\pi / n} c_{1}^{2} h_{1}+\sum_{j=2}^{n-2}\left(c_{j-1}^{2}+c_{j-1} c_{j}+c_{j}^{2}\right)\left(h_{j}-h_{j-1}\right) \\
\left.+c_{n-2}^{2}\left(h_{n-1}-h_{n-2}\right)\right) d \theta
\end{gathered}
$$

where the heights are given as in Figure 5 below.


Figure 5. Heights and chords as a function of $\theta$.
Proof: We observe that the summation over the chord values follows directly from the trapezoidal formula. We need only calculate the value of $A(K)$.


Figure 6. The area of the triangle associated to side of length a.
The area is given by

$$
A(K)=a^{2} n \frac{\cot (\pi / n)}{4}
$$

Plugging this into the formula and taking into account that we must complete $n$ identical integrals from 0 to $\pi / n$ gives the result.

As an example consider the case of the square of side length $a$. Then

$$
c_{o}=0, c_{1}=a \sec (\theta), h_{1}=a \sin (\theta), c_{2}=a \sec (\theta), h_{2}=a \cos (\theta)-a \sin (\theta)
$$

which applied to our theorem leads to the integral formula

$$
\begin{gathered}
E(\sigma)=\frac{2}{3 \pi a^{2}} \int_{o}^{\pi / 4} a^{3}(3 \sec (\theta)-\sec (\theta) \tan (\theta)) d \theta \\
=\frac{2 a}{3 \pi}(3 \ln (1+\sqrt{2})+1-\sqrt{2})
\end{gathered}
$$

Now consider the case of the rectangle with sides $a$ and $b$. Applying the theorem for side $a_{1}=a$ gives the integral formula

$$
\begin{aligned}
\int_{o}^{\arctan (b / a)} \int_{o}^{h(\theta)} & c^{2}(t, \theta) d t d \theta
\end{aligned}=
$$

which leads to the formula

$$
E(\sigma)=\frac{a+b}{3 \pi}(3 \ln (1+\sqrt{2})+1-\sqrt{2})
$$

As a further example consider the case of the regular pentagon with side length $a$. We assume that for some angle $\theta, 0 \leq \theta \leq \pi / 5$, and diameter $\delta$ we have

$$
h_{1}=a \sin (\theta) ; c_{1}=a \cos (\theta)+a \sin (\theta) \cot \left(\frac{2 \pi}{5}-\theta\right) ; h_{2}-h_{1}=\delta \sin \left(\frac{\pi}{5}-\theta\right)
$$

$$
c_{2}=\delta\left(\cos \left(\frac{\pi}{5}-\theta\right)+\sin \left(\frac{\pi}{5}-\theta\right) \cot \left(\frac{\pi}{10}-\theta\right)\right)
$$



Figure 7. An escape from the pentagon in a given direction determined by $\theta$.
Therefore, using symmetry and doubling the bottom half of the computation we have

$$
E(\sigma)=\frac{4 \tan (\pi / 5)}{3 a^{2} \pi} \int_{o}^{\pi / 5} c_{1}^{2} h_{1}+\left(c_{1}^{2}+c_{1} c_{2}+c_{2}^{2}\right)\left(h_{2}-h_{1}\right) d \theta
$$

To complete the the computation, we will need to solve the following integrals:

$$
\begin{aligned}
& \int_{o}^{\pi / 5} c_{1}^{2} h_{1} d \theta= \\
& \quad a^{3} \int_{o}^{\pi / 5} \sin (\theta)\left(\left(\cos (\theta)+\sin \left(\frac{\pi}{10}\right) \sin (\theta) \cos (\theta)+\cos \left(\frac{\pi}{10}\right) \sin ^{2}(\theta)\right)^{2} d \theta\right. \\
& \int_{o}^{\pi / 5} c_{1}^{2}\left(h_{2}-h_{1}\right) d \theta= \\
& a^{2} \delta \int_{o}^{\pi / 5} \sin \left(\frac{\pi}{5}-\theta\right)\left(\left(\cos (\theta)+\sin \left(\frac{\pi}{10}\right) \sin (\theta) \cos (\theta)+\cos \left(\frac{\pi}{10}\right) \sin ^{2}(\theta)\right)^{2} d \theta\right.
\end{aligned}
$$

The last two integrals are similar and involve trigonometric functions of $\cos (\theta)$ and $\sin (\theta)$ with combined powers of 5 or less. The solution for the integrals in the case of the the general regular polygon is not significantly different since they also involve triangles and trapezoids of the same kind.

## 3. The Case of the General Convex Polygon.

We begin with the case of the general triangle.
Theorem The expectation for exiting a triangle $K$ is

$$
\begin{aligned}
& E(\sigma)=\sum_{i=1}^{3} \frac{a_{i} \sin ^{2}\left(\alpha_{i}\right)}{6 \pi A(K)}\left(\int_{o}^{\alpha_{i-1}} a_{i-1}^{2} \sec \left(\frac{\pi}{2}-\alpha_{i-1}-\theta\right) d \theta\right. \\
& \left.\quad+\int_{o}^{\frac{\pi}{2}-\alpha_{i+1}} a_{i+1}^{2} \sec \left(\frac{\pi}{2}-\alpha_{i+1}-\theta\right) d \theta\right) \\
& =\sum_{i=1}^{3} \frac{a_{i} \sin ^{2}\left(\alpha_{i}\right)}{6 \pi A(K)}\left[a_{i-1}^{2} \ln \left((\sec +\tan )\left(\frac{\pi}{2}-\alpha_{i-1}\right)\right)\right. \\
& \\
& \left.\quad+a_{i+1}^{2} \ln \left((\sec +\tan )\left(\frac{\pi}{2}-\alpha_{i+1}\right)\right)\right]
\end{aligned}
$$

where the sides are of length $a_{i}$ and the interior angle between $a_{i-1}$ and $a_{i}$ is $\alpha_{i}$ and $a_{3}=a_{o}$.


Figure 9. An escape from a polygon in a given direction determined by $\theta$.
We note that the integral above is obtained by a substitution in the case of the equilateral triangle since the actual integrand is

$$
\sin (\theta) \sec ^{2}\left(\frac{\pi}{6}-\theta\right)
$$

As an application to the theorem consider the case of the equilateral triangle such that that $a_{1}=a_{2}=a_{3}=1$ then the formula gives

$$
\begin{aligned}
E(\sigma) & =\frac{3 / 4}{\pi \sqrt{3} / 4} \ln \left(\frac{2}{\sqrt{3}}-\frac{1}{\sqrt{3}}\right) \\
& =\frac{\sqrt{3} \ln (3)}{2 \pi} \approx 0.31
\end{aligned}
$$

Theorem The expectation to escape from an $n$ sided polygon is given by
$E(\sigma)=\frac{1}{6 \pi A(K)} \sum_{j=1}^{n} \int_{o}^{\theta_{j}}\left(c_{1}^{2} h_{1}+\sum_{i=1}^{n-3}\left(c_{i}^{2}+c_{i} c_{i+1}+c_{i+1}^{2}\right)\left(h_{i+1}-h_{i}\right)\right.$

$$
\left.+c_{n-2}^{2}\left(h_{n-1}-h_{n-2}\right)\right) d \theta
$$

where $\sum_{j} \theta_{j}=\pi$ with the standard assumptions on the heights $h_{i}$ and the chords $c_{i}$ which depend on $\theta$.


Figure 9. An escape from a polygon in a given direction determined by $\theta$.
A similar formula will hold for any convex polygon whic can be decomposed as triangles and trapezoids for each angle $\theta$. I would like to thank Steve Finch and John Wetzel for suggesting this problem to me.

## Bibliography

[1] Coleman, R. Random Paths Through Convex Bodies, Journal of Applied Probability, 6, No. 2, pp. 430-441, 1969
[2] Coleman, R. Random Sections of a Sphere, The Canadian Journal of Statistics, 17, No. 1, pp. 27-39, 1989
[3] Finch, S. R. and Wetzel, J. E. Lost in a Forest, Amer. Math. Monthly 111, 645-654, 2004.
[4] Santalo, L. Integral Geometry and Geometric Probability, Encyclopedia of Mathematics, Addison-Wesley, Reading, Massachusetts, 1976.

