A Theorem of Hilbert

Mat 3271 Class

Theorem (Hilbert) Assume that there exists lines ℓ and ℓ^{\prime} parallel such that ℓ is not asymptotic to ℓ^{\prime}. Then there exists a unique common perpendicular to the given lines.

Sketch of the Proof: The proof is obtained by justifying the following steps.

1. Consider points A and B on $\overleftrightarrow{A B}$ and drop perpendiculars $A A^{\prime}$ and $B B^{\prime}$ to $\overleftrightarrow{A^{\prime} B^{\prime}}$. If either is a common perpendicular then we are done. If $\left|A A^{\prime}\right|=\left|B B^{\prime}\right|$ then there exist a common perpendicular at the midpoint which is unique since there are no rectangles in \mathcal{H}^{2}.
2. On the basis of part (1), We assume WOLOG that $\left|A A^{\prime}\right|>\left|B B^{\prime}\right|$ and we construct E on $A A^{\prime}$ such that $E A^{\prime}\left|=\left|B B^{\prime}\right|\right.$. (segment duplication and the embedding relation)
3. At E construct the line $\overleftrightarrow{E F}$ such that F is on $\mathrm{SS}\left(\overleftrightarrow{A A^{\prime}}\right)$ as B and $\angle F E A^{\prime} \cong \angle G B B^{\prime}$ where $A * B * G$.

Figure 1. Construction of $E A^{\prime} \cong B B^{\prime}$ and $\angle F E A^{\prime} \cong \angle G B B^{\prime}$.
4. We must show that $\overleftrightarrow{E F} \cap \overleftrightarrow{A B} \neq \emptyset$. If $H=\ell(E F) \cap \overleftrightarrow{A B}$, then we can find $K \in \overleftrightarrow{A B}$, such that $B K \cong E H$.
5. If this is the case, we will show that $H H^{\prime} \cong K K^{\prime}$ where $H H^{\prime}$ and $K K^{\prime}$ are perp to $\overleftrightarrow{A^{\prime} B^{\prime}}$, which implies that the midpoint of $H K$ on $\overleftrightarrow{A B}$ gives the point which produces the unique common perpendicular.

We say that $[A B C D$ is a biangle if $A B \| C D$ and A and D are on $S S(\overleftrightarrow{B C})$. We say that $B C$ is the base of the biangle. In addition, we will say that the biangle is closed at B if every interior ray emanating from B intersects $\overrightarrow{C D}$. Observe that $A B$ is asymptotic to $C D$ on the given side when the biangle is closed at B.

Figure 2. An interior ray for the biangle $[A B C D$.
To prove that such a point H exists we need the following lemmas.

Lemma 1 (Extension) Assume that $[A B C D$ is closed at B. If $P * B * A$ or $B * P * A$ then the biangle $[A P C D$ is closed at A.
Proof:

Figure 3. Biangle closed at B implies the biangles are closed at P and P^{\prime}.

1. Extend $A B$ to point P such that $P * B * A$
2. Show that $P X \cap C D \neq \emptyset$
3. Construct an angle at $\angle A B E$ by corresponding angles to $\angle B P X$
4. $P X \| C D$ (Corresponding Angles)
5. $B E \| P X$
6. $P X \| C D$ (Transitivity of Parallelism) Contradiction
7. Choose a point P^{\prime} such that $B * P^{\prime} * A$
8. Construct an angle at $\angle A B E$ by corresponding angles to $\angle A P^{\prime} Y$
9. $B E \| C D$ (Corresponding Angles)
10. $P^{\prime} Y \| B E$
11. $B E \| C D$ (Transitivity of Parallelism) Contradiction
12. $[A B C D$ is closed at B

Lemma 2 (Biangle Closure Symmetry) Assume that $[A B C D$ is closed at B and show that the biangle is closed at C.

Proof:

1. Assume by way of contradiction that $[A B C D$ is not closed at C.
2. Then some interior ray $\overrightarrow{C E}$ does not intersect $\overrightarrow{B A}$.
3. Choose $\angle B E C<\angle E C D$. This is possible by the corollary to Aristotle's axiom in Chapter 3.
4. $\overrightarrow{B E} \cap \overrightarrow{C D}=\emptyset$ because $\overrightarrow{C B} * \overrightarrow{C E} * \overrightarrow{C D}$.
5. Interior ray $\overrightarrow{B E}$ intersects $\overrightarrow{C D}$ in a point F and $B * E * F$ because $\overrightarrow{B A} \mid \overrightarrow{C D}$.
6. Since $\angle B E C$ is an exterior angle for $\triangle E F C$,

$$
\angle B E C>\angle E C F=\angle E C D
$$

which gives us our contradiction.
7. Thus $\overrightarrow{C D} \mid \overrightarrow{B A}$.

Figure 4. To show that the biangle is closed at C.

Lemma 3 (Inner Transitivity) Assume that the biangles [BAEF and [DCEF are closed at their respective verticies and that A and C are on $S S(\ell(E F))$. Then the biangle $[B A C D$ is closed.
Proof: If $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are both limiting parallel to $\overleftrightarrow{E F}$, then they are limiting parallel to each other.

Figure 5. Closed biangles [BAEF and [DCEF.

1. $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ have no point in common, by Betweenness Axiom 4: Plane Separation along line $\overleftrightarrow{E F}$.
2. Hence, there are two cases, depending on whether $\overleftrightarrow{E F}$ is between $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ or $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are both on the same side of $\overleftrightarrow{E F}$, by Betweenness Axiom 3: Trichotomy.
3. In case $\overleftrightarrow{E F}$ is between $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$, let G be the intersection of AC with $\overleftrightarrow{E F}$, by Betweenness Axiom 4: Plane Separation. (To switch half-planes, it would have to cross $\overleftrightarrow{E F}$.)
4. Any ray $\overrightarrow{A H}$ interior to $\angle G A B$ must intersect $\overleftrightarrow{E F}$ in a point I. Because $\overleftrightarrow{A B}$ is limiting parallel to $\overleftrightarrow{E F}$, any interior ray must intersect EF, or AB is not a limiting parallel.
5. $\overrightarrow{I H}$, lying interior to $\angle C I F$, must intersect $\overleftrightarrow{C D}$, because $\overleftrightarrow{E F}$ is limiting parallel to $\overleftrightarrow{C D}$. By symmetry of limiting parallelism, any interior ray must intersect $\overleftrightarrow{C D}$.
6. Hence, any ray $\overrightarrow{A H}$ interior to $\angle C A B$ must intersect $\overleftrightarrow{C D}$, so $\overleftrightarrow{A B}$ is limiting parallel to $\overleftrightarrow{C D}$

Lemma 4 (Outer Transitivity) Assume that the biangles [BAEF and $[D C E F$ are closed at their respective verticies and that A and C are on $O S(\overleftrightarrow{E F})$. Then the biangle $[B A C D$ is closed.

Proof:

Figure 6. Closed biangles $[B A E F$ and $[D C E F$.

1. It suffices to show there is a line transversal to the three rays $\overrightarrow{A B}, \overrightarrow{C D}$, $\overrightarrow{E F}$.
2. Case 1: A and F are on the same side of $\overleftrightarrow{E C}$.
3. Then ray $\overrightarrow{E A}$ is interior to $\angle E$. Since A, C are $\mathrm{SS}(\overrightarrow{E F})$ and A, F are $\mathrm{SS}(\overrightarrow{E C})$
4. Then $\overrightarrow{E A}$ intersects $\overrightarrow{C D}$ since $[F E C D$. Thus $\overrightarrow{E A}$ is our transversal.
5. Case 2: (See figure 6) A and F are on opposite sides of $\overleftrightarrow{E C}$.
6. Let G be the point at which $A F$ meets $\overleftrightarrow{E C}$. Since $[F E A J$.
7. Add H such that $E * F * H$ by segment extension.
8. Thus $[H F A J$ Since $[F E A J$.
9. Now we have $\angle H F G>\angle E$ By exterior angle theorem.
10. Now construct ray $\overrightarrow{F I}$ interior to $\angle H F A$ such that $\angle H F I \cong \angle E$. By angle duplication.
11. Let J be the point that $\overrightarrow{F I}$ meets $\overrightarrow{A J}$. Since $[H F A J$.
12. Now $\overleftrightarrow{F J} \| \overleftrightarrow{E C}$ by alternate interior angle theorem.
13. Since $\overleftrightarrow{E C}$ intersects side $A F$ and does not intersect side $F J$ of $\triangle A F J$ it must intersect $A J$ by Pasch's Theorem.
14. Thus $\overleftrightarrow{E C}$ is our transversal.

Figure 6. Closed biangles $[B A E F$ and $[D C E F$.

Lemma 5 (EA for Asymp- Δ) Assume that $\triangle P Q \Omega$ is a singly asymptotic triangle at Ω. Then the exterior angle at P is greater than the interior angle at Q. N.B. by symmetry, the exterior angle at q is greater than the interior angle at P.

Proof:

1. Extend PQ to a point R.
2. Given $\mathrm{R} * \mathrm{Q} * \mathrm{P}$. We must show that $\angle R Q \Omega>\angle Q P \Omega$.
3. Let $\overrightarrow{Q D}$ be the unique ray on the same side of $\overleftrightarrow{P Q}$ as $\overrightarrow{Q \Omega}$ such that $\angle R Q D \cong \angle Q P \Omega$. (Corresponding Angles)
4. Extend $\overrightarrow{Q D}$ to a point U .
5. If $\mathrm{U} * \mathrm{Q}^{*} \mathrm{P}$, then $\angle U Q P \cong \angle Q P \Omega$. (Vertical Angle Theorem)
6. By Exercise 14, $\overleftrightarrow{Q D}$ and $\overleftrightarrow{P \Omega}$ are divergently parallel.
7. $\overrightarrow{Q D}$ must be between $\overrightarrow{Q R}$ and $\overrightarrow{Q S}$.
8. If $\overrightarrow{Q D}$ is between $\overrightarrow{Q \Omega}$ and $\overrightarrow{P \Omega}$, then $\overrightarrow{Q D}$ meets $\overrightarrow{P \Omega}$ which is a contradiction.
9. Therefore, $\angle R Q D<\angle R Q \Omega$
10. Since $\angle Q P \Omega \cong \angle R Q D$, Conclusion, $\angle R Q \Omega>\angle Q P \Omega$.

Figure 7. The exterior angle theorem.

Lemma 6 (Congruence of Asymp- Δ) Assume that the singly asymptotic triangles $\triangle A B \Omega$ and $\triangle A^{\prime} B^{\prime} \Omega^{\prime}$ satisfy $\angle B A \Omega \cong \angle B^{\prime} A^{\prime} \Omega^{\prime}$. Then $\triangle A B \Omega \cong$ $\delta A^{\prime} B^{\prime} \Omega^{\prime}$ if and only if $A B \cong A^{\prime} B^{\prime}$.
Proof:

Figure 8. $\triangle A B D \cong \triangle A^{\prime} B^{\prime} D^{\prime}$.

1. (\Leftarrow) Assume $|A B| \cong\left|A^{\prime} B^{\prime}\right|$ according to the hypothesis.
2. Also Assume $\angle A B \Omega>\angle A^{\prime} B^{\prime} C^{\prime}$
3. There exisits a uniuque ray $\overrightarrow{B C}$ such that $\angle A B C \cong \angle A^{\prime} B^{\prime} \Omega^{\prime}$
4. ray $\overrightarrow{B C}$ intersects $A \Omega$ at pt D
5. Let D^{\prime} be the unique point on $A^{\prime} \Omega^{\prime}$ such that $|A D| \cong\left|A^{\prime} D^{\prime}\right|$
6. $\triangle B A D \cong \Delta B^{\prime} A^{\prime} D^{\prime}$
7. $\angle A B C \cong \angle A^{\prime} B^{\prime} \Omega^{\prime} \cong \angle A^{\prime} B^{\prime} D^{\prime}$ which gives a contradiction.
8. (\Rightarrow) Assume that $\angle A B \Omega \cong \angle A^{\prime} B^{\prime} \Omega^{\prime}$
9. Assume that $\left|A^{\prime} B^{\prime}\right|<|A B|$
10. Let C be the point on $A B$ such that $B C \cong B^{\prime} A^{\prime}$
11. let $\overrightarrow{C \Omega}$ be the limiting ray from C to $\overrightarrow{A \Omega}$
12. $C \Omega$ is also a limiting parallel to $\mathrm{B} \Omega$
13. $\angle \mathrm{BC} \Omega \cong \angle \mathrm{B}^{\prime} \mathrm{C}^{\prime} \Omega^{\prime}$
14. $\angle \mathrm{BA} \Omega \cong \angle \mathrm{BC} \Omega$
15. $\angle \mathrm{BC} \Omega>\angle \mathrm{BA} \Omega$.

Figure 8. $\triangle A B D \cong \triangle A^{\prime} B^{\prime} D^{\prime}$.

Lemma 7 Assume the conditions of the theorem. Then there exists a point $H=\ell(A B) \cap \ell(E F)$.

Proof:

Figure 9. Demonstration of the existence of H.

1. Let $\overrightarrow{A^{\prime} M}$ be limiting parallel to $\overrightarrow{E F}, \overrightarrow{A^{\prime} N}$ limiting parallel to $\overrightarrow{A G}$, and $\overrightarrow{B^{\prime} P}$ limiting parallel to $\overrightarrow{B G}$
2. Since $E A^{\prime} \cong B B^{\prime}$ and $\angle A^{\prime} E F \cong \angle B^{\prime} B G$, we have $\angle E A^{\prime} M \cong \angle B B^{\prime} P$ (side and angle gives us congruent triangles)
3. $\overrightarrow{B^{\prime} L}$ differs from $\overrightarrow{A^{\prime} N}$ (from previous results)
4. $\angle M A^{\prime} L \cong \angle P B^{\prime} L$ (by angle subtraction)
5. $\overrightarrow{B^{\prime} P}$ is a limiting parallel to $\overrightarrow{A^{\prime} N}$
6. Hence $\angle N A^{\prime} L$ is smaller than $\angle P B^{\prime} L$ (since $\angle N A^{\prime} L<\angle M A^{\prime} L$)
7. $A^{\prime} M$ lies between $\overrightarrow{A^{\prime} N}$ and $\overrightarrow{A^{\prime} A}$, so it must intersect $\overrightarrow{A G}$ at a point we'll call J (since closed at A^{\prime})
8.) J is on the same side of $\overrightarrow{E F}$ as A^{\prime}, thus on the opposite side of A
9. Thus $\overrightarrow{A J}$ intersects $\overrightarrow{E F}$ in a point H which must be on $\overrightarrow{E F}$ because H is on the same side of $\overrightarrow{A^{\prime} A}$ as J

Figure 9. Demonstration of the existence of H.

