A Theorem of Hilbert

Mat 3271 Class

Theorem (Hilbert) Assume that there exists lines ℓ and ℓ' parallel such that ℓ is not asymptotic to ℓ' . Then there exists a unique common perpendicular to the given lines.

Sketch of the Proof: The proof is obtained by justifying the following steps.

- 1. Consider points A and B on \overrightarrow{AB} and drop perpendiculars AA' and BB' to $\overrightarrow{A'B'}$. If either is a common perpendicular then we are done. If |AA'| = |BB'| then there exist a common perpendicular at the midpoint which is unique since there are no rectangles in \mathcal{H}^2 .
- 2. On the basis of part (1), We assume WOLOG that |AA'| > |BB'| and we construct E on AA' such that EA'| = |BB'|. (segment duplication and the embedding relation)
- 3. At *E* construct the line \overleftarrow{EF} such that *F* is on $SS(\overleftarrow{AA'})$ as *B* and $\angle FEA' \cong \angle GBB'$ where A * B * G.

Figure 1. Construction of $EA' \cong BB'$ and $\angle FEA' \cong \angle GBB'$.

- 4. We must show that $\overleftrightarrow{EF} \cap \overleftrightarrow{AB} \neq \emptyset$. If $H = \ell(EF) \cap \overleftrightarrow{AB}$, then we can find $K \in \overleftrightarrow{AB}$, such that $BK \cong EH$.
- 5. If this is the case, we will show that $HH' \cong KK'$ where HH' and KK' are perp to $\overleftarrow{A'B'}$, which implies that the midpoint of HK on \overleftarrow{AB} gives the point which produces the unique common perpendicular.

We say that [ABCD] is a biangle if AB||CD and A and D are on $SS(\overrightarrow{BC})$. We say that BC is the base of the biangle. In addition, we will say that the biangle is closed at B if every interior ray emanating from B intersects \overrightarrow{CD} . Observe that AB is asymptotic to CD on the given side when the biangle is closed at B.

Figure 2. An interior ray for the biangle [ABCD.

To prove that such a point H exists we need the following lemmas.

Lemma 1 (Extension) Assume that [ABCD is closed at B. If P * B * A or B * P * A then the biangle [APCD is closed at A.

Figure 3. Biangle closed at B implies the biangles are closed at P and P'.

- 1. Extend AB to point P such that P * B * A
- 2. Show that $PX \cap CD \neq \emptyset$
- 3. Construct an angle at $\angle ABE$ by corresponding angles to $\angle BPX$
- 4. $PX \parallel CD$ (Corresponding Angles)
- 5. $BE \parallel PX$
- 6. $PX \parallel CD$ (Transitivity of Parallelism) Contradiction
- 7. Choose a point P' such that B * P' * A
- 8. Construct an angle at $\angle ABE$ by corresponding angles to $\angle AP'Y$
- 9. $BE \parallel CD$ (Corresponding Angles)
- 10. $P'Y \parallel BE$
- 11. $BE \parallel CD$ (Transitivity of Parallelism) Contradiction
- 12. [ABCD is closed at B]

Proof:

- 1. Assume by way of contradiction that [ABCD] is not closed at C.
- 2. Then some interior ray \overrightarrow{CE} does not intersect \overrightarrow{BA} .
- 3. Choose $\angle BEC < \angle ECD$. This is possible by the corollary to Aristotle's axiom in Chapter 3.
- 4. $\overrightarrow{BE} \cap \overrightarrow{CD} = \emptyset$ because $\overrightarrow{CB} * \overrightarrow{CE} * \overrightarrow{CD}$.
- 5. Interior ray \overrightarrow{BE} intersects \overrightarrow{CD} in a point F and B * E * F because $\overrightarrow{BA}|\overrightarrow{CD}$.
- 6. Since $\angle BEC$ is an exterior angle for $\triangle EFC$,

$$\angle BEC > \angle ECF = \angle ECD$$

which gives us our contradiction.

7. Thus $\overrightarrow{CD}|\overrightarrow{BA}$.

Figure 4. To show that the biangle is closed at C.

Lemma 3 (Inner Transitivity) Assume that the biangles [BAEF] and [DCEF] are closed at their respective vertices and that A and C are on $SS(\ell(EF))$. Then the biangle [BACD] is closed.

Proof: If \overrightarrow{AB} and \overrightarrow{CD} are both limiting parallel to \overleftarrow{EF} , then they are limiting parallel to each other.

Figure 5. Closed biangles [BAEF and [DCEF.

- 1. \overrightarrow{AB} and \overrightarrow{CD} have no point in common, by Betweenness Axiom 4: Plane Separation along line \overleftarrow{EF} .
- 2. Hence, there are two cases, depending on whether \overleftarrow{EF} is between \overleftarrow{AB} and \overrightarrow{CD} or \overrightarrow{AB} and \overrightarrow{CD} are both on the same side of \overrightarrow{EF} , by Betweenness Axiom 3: Trichotomy.
- 3. In case \overrightarrow{EF} is between \overrightarrow{AB} and \overrightarrow{CD} , let G be the intersection of AC with \overrightarrow{EF} , by Betweenness Axiom 4: Plane Separation. (To switch half-planes, it would have to cross \overrightarrow{EF} .)
- 4. Any ray \overrightarrow{AH} interior to $\angle GAB$ must intersect \overleftarrow{EF} in a point I. Because \overrightarrow{AB} is limiting parallel to \overleftarrow{EF} , any interior ray must intersect EF, or AB is not a limiting parallel.
- 5. \overrightarrow{IH} , lying interior to $\angle CIF$, must intersect \overrightarrow{CD} , because \overrightarrow{EF} is limiting parallel to \overrightarrow{CD} . By symmetry of limiting parallelism, any interior ray must intersect \overrightarrow{CD} .
- 6. Hence, any ray \overrightarrow{AH} interior to $\angle CAB$ must intersect \overleftarrow{CD} , so \overleftarrow{AB} is limiting parallel to \overleftarrow{CD} .

Lemma 4 (Outer Transitivity) Assume that the biangles [BAEF] and [DCEF] are closed at their respective vertices and that A and C are on $OS(\overrightarrow{EF})$. Then the biangle [BACD] is closed.

Figure 6. Closed biangles [BAEF and [DCEF.

- 1. It suffices to show there is a line transversal to the three rays \overrightarrow{AB} , \overrightarrow{CD} , \overrightarrow{EF} .
- 2. Case 1: A and F are on the same side of \overleftarrow{EC} .
- 3. Then ray \overrightarrow{EA} is interior to $\angle E$. Since A, C are $SS(\overrightarrow{EF})$ and A, F are $SS(\overrightarrow{EC})$
- 4. Then \overrightarrow{EA} intersects \overrightarrow{CD} since [FECD. Thus \overrightarrow{EA} is our transversal.
- 5. Case 2: (See figure 6) A and F are on opposite sides of \overleftarrow{EC} .
- 6. Let G be the point at which AF meets \overleftarrow{EC} . Since [FEAJ].
- 7. Add H such that E * F * H by segment extension.
- 8. Thus [HFAJ Since [FEAJ].
- 9. Now we have $\angle HFG > \angle E$ By exterior angle theorem.
- 10. Now construct ray \overrightarrow{FI} interior to $\angle HFA$ such that $\angle HFI \cong \angle E$. By angle duplication.
- 11. Let J be the point that \overrightarrow{FI} meets \overrightarrow{AJ} . Since [HFAJ].

- 12. Now $\overleftarrow{FJ} || \overleftarrow{EC}$ by alternate interior angle theorem.
- 13. Since \overleftarrow{EC} intersects side AF and does not intersect side FJ of $\triangle AFJ$ it must intersect AJ by Pasch's Theorem.
- 14. Thus \overleftarrow{EC} is our transversal.

Figure 6. Closed biangles [BAEF and [DCEF.

Lemma 5 (EA for Asymp- Δ) Assume that $\Delta PQ\Omega$ is a singly asymptotic triangle at Ω . Then the exterior angle at P is greater than the interior angle at Q. N.B. by symmetry, the exterior angle at q is greater than the interior angle at P.

- 1. Extend PQ to a point R.
- 2. Given R * Q * P. We must show that $\angle RQ\Omega > \angle QP\Omega$.
- 3. Let \overrightarrow{QD} be the unique ray on the same side of \overleftarrow{PQ} as $\overrightarrow{Q\Omega}$ such that $\angle RQD \cong \angle QP\Omega$. (Corresponding Angles)
- 4. Extend \overrightarrow{QD} to a point U.
- 5. If U * Q * P, then $\angle UQP \cong \angle QP\Omega$. (Vertical Angle Theorem)
- 6. By Exercise 14, \overleftarrow{QD} and $\overleftarrow{P\Omega}$ are divergently parallel.
- 7. \overrightarrow{QD} must be between \overrightarrow{QR} and \overrightarrow{QQ} .
- 8. If \overrightarrow{QD} is between $\overrightarrow{Q\Omega}$ and $\overrightarrow{P\Omega}$, then \overrightarrow{QD} meets $\overrightarrow{P\Omega}$ which is a contradiction.
- 9. Therefore, $\angle RQD < \angle RQ\Omega$
- 10. Since $\angle QP\Omega \cong \angle RQD$, Conclusion, $\angle RQ\Omega > \angle QP\Omega$.

Figure 7. The exterior angle theorem.

Lemma 6 (Congruence of Asymp- Δ) Assume that the singly asymptotic triangles $\Delta AB\Omega$ and $\Delta A'B'\Omega'$ satisfy $\angle BA\Omega \cong \angle B'A'\Omega'$. Then $\Delta AB\Omega \cong \delta A'B'\Omega'$ if and only if $AB \cong A'B'$.

Figure 8. $\triangle ABD \cong \triangle A'B'D'$.

- 1. (\Leftarrow)Assume $|AB| \cong |A'B'|$ according to the hypothesis.
- 2. Also Assume $\angle AB\Omega > \angle A'B'C'$
- 3. There exisits a unique ray \overrightarrow{BC} such that $\angle ABC \cong \angle A'B'\Omega'$
- 4. ray \overrightarrow{BC} intersects $A\Omega$ at pt D
- 5. Let D' be the unique point on $A'\Omega'$ such that $|AD| \cong |A'D'|$
- 6. $\Delta BAD \cong \Delta B'A'D'$
- 7. $\angle ABC \cong \angle A'B'\Omega' \cong \angle A'B'D'$ which gives a contradiction.
- 8. (\Rightarrow) Assume that $\angle AB\Omega \cong \angle A'B'\Omega'$
- 9. Assume that |A'B'| < |AB|
- 10. Let C be the point on AB such that $BC \cong B'A'$

- 11. let $\overrightarrow{C\Omega}$ be the limiting ray from C to $\overrightarrow{A\Omega}$
- 12. $C\Omega$ is also a limiting parallel to ${\rm B}\Omega$
- 13. \angle BC $\Omega \cong \angle$ B'C' Ω'
- 14. $\angle BA\Omega \cong \angle BC\Omega$
- 15. \angle BC $\Omega > \angle$ BA Ω .

Lemma 7 Assume the conditions of the theorem. Then there exists a point $H = \ell(AB) \cap \ell(EF)$.

Figure 9. Demonstration of the existence of H.

- 1. Let $\overrightarrow{A'M}$ be limiting parallel to \overrightarrow{EF} , $\overrightarrow{A'N}$ limiting parallel to \overrightarrow{AG} , and $\overrightarrow{B'P}$ limiting parallel to \overrightarrow{BG}
- 2. Since $EA' \cong BB'$ and $\angle A'EF \cong \angle B'BG$, we have $\angle EA'M \cong \angle BB'P$ (side and angle gives us congruent triangles)
- 3. $\overrightarrow{B'L}$ differs from $\overrightarrow{A'N}$ (from previous results)
- 4. $\angle MA'L \cong \angle PB'L$ (by angle subtraction)
- 5. $\overrightarrow{B'P}$ is a limiting parallel to $\overrightarrow{A'N}$
- 6. Hence $\angle NA'L$ is smaller than $\angle PB'L$ (since $\angle NA'L < \angle MA'L$)
- 7. A'M lies between $\overrightarrow{A'N}$ and $\overrightarrow{A'A}$, so it must intersect \overrightarrow{AG} at a point we'll call J (since closed at A')
- 8.) J is on the same side of \overrightarrow{EF} as A', thus on the opposite side of A

9. Thus \overrightarrow{AJ} intersects \overrightarrow{EF} in a point H which must be on \overrightarrow{EF} because H is on the same side of $\overrightarrow{A'A}$ as J

Figure 9. Demonstration of the existence of H.