## A Theorem of Hilbert

## Mat 3271 Class

Theorem (Hilbert) Assume that there exists lines $\ell$ and $\ell^{\prime}$ parallel such that $\ell$ is not asymptotic to $\ell^{\prime}$. Then there exists a unique common perpendicular to the given lines.

Sketch of the Proof: The proof is obtained by justifying the following steps.

1. Consider points $A$ and $B$ on $\ell(A B)$ and drop perpendiculars $A A^{\prime}$ and $B B^{\prime}$ to $\ell\left(A^{\prime} B^{\prime}\right)$. If either is a common perpendicular then we are done. If $\left|A A^{\prime}\right|=\left|B B^{\prime}\right|$ then there exist a common perpendicular at the midpoint which is unique since there are no rectangles in $\mathcal{H}^{2}$.
2. On the basis of part (1), We assume WOLOG that $\left|A A^{\prime}\right|>\left|B B^{\prime}\right|$ and we construct $E$ on $A A^{\prime}$ such that $E A^{\prime}\left|=\left|B B^{\prime}\right|\right.$. (segment duplication and the embedding relation)
3. At $E$ construct the line $\ell(E F)$ such that $F$ is on $\operatorname{SS}\left(A A^{\prime}\right)$ as $B$ and $\angle F E A^{\prime} \cong \angle G B B^{\prime}$ where $A * B * G$.


Figure 1. Construction of $E A^{\prime} \cong B B^{\prime}$ and $\angle F E A^{\prime} \cong \angle G B B^{\prime}$.
4. We must show that $\ell(E F) \cap \ell(A B) \neq \emptyset$. If $H=\ell(E F) \cap \ell(A B)$, then we can find $K \in \ell(A B)$, such that $B K \cong E H$.
5. If this is the case, we will show that $H H^{\prime} \cong K K^{\prime}$ where $H H^{\prime}$ and $K K^{\prime}$ are perp to $\ell\left(A^{\prime} B^{\prime}\right)$, which implies that the midpoint of $H K$ on $\ell(A B)$ gives the point which produces the unique common perpendicular.

We say that $[A B C D$ is a biangle if $A B \| C D$ and $A$ and $D$ are on $S S(\ell(B C))$. We say that $B C$ is the base of the biangle. In addition, we will say that the biangle is closed at $B$ if every interior ray emanating from $B$ intersects $C D$. Observe that $A B$ is asymptotic to $C D$ on the given side when the biangle is closed at $B$.


Figure 2. An interior ray for the biangle $[A B C D$.
To prove that such a point $H$ exists we need the following lemmas.

Lemma 1 (Extension) Assume that $[A B C D$ is closed at $B$. If $P * B * A$ or $B * P * A$ then the biangle $[A P C D$ is closed at $A$.

Proof: ...


Figure 3. Biangle closed at $B$ implies the biangles are closed at $P$ and $P^{\prime}$.

Lemma 2 (Symmetry) Assume that $[A B C D$ is closed at $B$ and show that the biangle is closed at $C$.

Proof: ...


Figure 4. To show that the biangle is closed at $C$.

Lemma 3 (Inner Transitivity) Assume that the biangles [BAEF and [DCEF are closed at their respective verticies and that $A$ and $C$ are on $S S(\ell(E F))$. Then the biangle $[B A C D$ is closed.

Proof: ...


Figure 5. Closed biangles $[B A E F$ and $[D C E F$.

Lemma 4 (Outer Transitivity) Assume that the biangles [BAEF and [DCEF are closed at their respective verticies and that $A$ and $C$ are on $O S(\ell(E F))$. Then the biangle $[B A C D$ is closed.
Proof: ...


Figure 3. Closed biangles $[B A E F$ and $[D C E F$.

Lemma 5 (EA for Asymp- $\Delta$ ) Assume that $\triangle P Q \Omega$ is a singly asymptotic triangle at $\Omega$. Then the exterior angle at $P$ is greater than the interior angle at $Q$. N.B. by symmetry, the exterior angle at $q$ is greater than the interior angle at $P$.
Proof: ...


Figure 7. The exterior angle theorem.

Lemma 6 (Congruence of Asymp- $\Delta$ ) Assume that the singly asymptotic triangles $\triangle A B \Omega$ and $\triangle A^{\prime} B^{\prime} \Omega^{\prime}$ satisfy $\angle B A \Omega \cong \angle B^{\prime} A^{\prime} \Omega^{\prime}$. Then $\triangle A B \Omega \cong$ $\delta A^{\prime} B^{\prime} \Omega^{\prime}$ if and only if $A B \cong A^{\prime} B^{\prime}$.
Proof: ...


Figure 8. $\triangle A B D \cong \triangle A^{\prime} B^{\prime} D^{\prime}$.

Lemma 7 Assume the conditions of the theorem. Then there exists a point $H=\ell(A B) \cap \ell(E F)$.

## Proof: ...



Figure 9. Demonstration of the existence of $H$.

