A Theorem of Hilbert

Mat 3271 Class

Theorem (Hilbert) Assume that there exists lines ℓ and ℓ' parallel such that ℓ is not asymptotic to ℓ' . Then there exists a unique common perpendicular to the given lines.

Sketch of the Proof: The proof is obtained by justifying the following steps.

- 1. Consider points A and B on $\ell(AB)$ and drop perpendiculars AA' and BB' to $\ell(A'B')$. If either is a common perpendicular then we are done. If |AA'| = |BB'| then there exist a common perpendicular at the midpoint which is unique since there are no rectangles in \mathcal{H}^2 .
- 2. On the basis of part (1), We assume WOLOG that |AA'| > |BB'| and we construct E on AA' such that EA'| = |BB'|. (segment duplication and the embedding relation)
- 3. At *E* construct the line $\ell(EF)$ such that *F* is on SS(*AA'*) as *B* and $\angle FEA' \cong \angle GBB'$ where A * B * G.

Figure 1. Construction of $EA' \cong BB'$ and $\angle FEA' \cong \angle GBB'$.

- 4. We must show that $\ell(EF) \cap \ell(AB) \neq \emptyset$. If $H = \ell(EF) \cap \ell(AB)$, then we can find $K \in \ell(AB)$, such that $BK \cong EH$.
- 5. If this is the case, we will show that $HH' \cong KK'$ where HH' and KK' are perp to $\ell(A'B')$, which implies that the midpoint of HK on $\ell(AB)$ gives the point which produces the unique common perpendicular.

We say that [ABCD] is a biangle if AB||CD and A and D are on $SS(\ell(BC))$. We say that BC is the base of the biangle. In addition, we will say that the biangle is closed at B if every interior ray emanating from B intersects CD. Observe that AB is asymptotic to CD on the given side when the biangle is closed at B.

Figure 2. An interior ray for the biangle [ABCD.

To prove that such a point H exists we need the following lemmas.

Lemma 1 (Extension) Assume that [ABCD is closed at B. If P * B * A or B * P * A then the biangle [APCD is closed at A.

Figure 3. Biangle closed at B implies the biangles are closed at P and P'.

Lemma 2 (Symmetry) Assume that [ABCD is closed at B and show that the biangle is closed at C.

Figure 4. To show that the biangle is closed at C.

Lemma 3 (Inner Transitivity) Assume that the biangles [BAEF and [DCEF are closed at their respective verticies and that A and C are on $SS(\ell(EF))$. Then the biangle [BACD is closed.

Figure 5. Closed biangles [BAEF and [DCEF.

Lemma 4 (Outer Transitivity) Assume that the biangles [BAEF and [DCEF are closed at their respective verticies and that A and C are on $OS(\ell(EF))$. Then the biangle [BACD is closed.

Figure 3. Closed biangles [BAEF and [DCEF.

Lemma 5 (EA for Asymp- Δ) Assume that $\Delta PQ\Omega$ is a singly asymptotic triangle at Ω . Then the exterior angle at P is greater than the interior angle at Q. N.B. by symmetry, the exterior angle at q is greater than the interior angle at P.

Figure 7. The exterior angle theorem.

Lemma 6 (Congruence of Asymp- Δ) Assume that the singly asymptotic triangles $\Delta AB\Omega$ and $\Delta A'B'\Omega'$ satisfy $\angle BA\Omega \cong \angle B'A'\Omega'$. Then $\Delta AB\Omega \cong \delta A'B'\Omega'$ if and only if $AB \cong A'B'$.

Figure 8. $\triangle ABD \cong \triangle A'B'D'$.

Lemma 7 Assume the conditions of the theorem. Then there exists a point $H = \ell(AB) \cap \ell(EF)$.

Figure 9. Demonstration of the existence of H.